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We have developed a curved isochron cl¢CkC) by modifying the radial isochron clock to provide a clean
example of the acceleratiofdeceleratiop effect. By analyzing a two-body system of coupled CICs, we
determined that an unbalanced mutual interaction caused by curved isochron sets is the minimum mechanism
needed for generating the acceleratidaceleratiopeffect in coupled oscillator systems. From this we can see
that the Sakaguchi and Kuramot8K) model, which is a class of nonfrustrated mean field model, has an
acceleratior(deceleratiop effect mechanism. To study frustrated coupled oscillator systems, we extended the
SK model to two oscillator associative memory models, one with symmetric and the other with asymmetric
dilution of coupling, which also have the minimum mechanism of the acceler&dieceleratioh effect. We
theoretically found that th®©nsager reaction ternfORT), which is unique to frustrated systems, plays an
important role in the acceleratiqdeceleratiopeffect. These two models are ideal for evaluating the effect of
the ORT because, with the exception of the ORT, they have the same order parameter equations. We found that
the two models have identical macroscopic properties, except for the acceleration effect caused by the ORT. By
comparing the results of the two models, we can extract the effect of the ORT from only the rotation speeds of
the oscillators.
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[. INTRODUCTION theory that can treat a general class of frustrated coupled
oscillator systems and use it to clarify the mechanism of the
Coupled oscillators are of intrinsic interest in many acceleration(deceleratioheffect in frustrated coupled oscil-
branches of physics, chemistry, and biology. One class dfators. We found that thédnsager reaction tern{ORT),
coupled oscillator systems has a property that by mutual inwhich describes the effective self-interaction, plays a key
teractions, the oscillatory frequency of an individual unit isrole in the effect. The ORT is of great importance in obtain-
made higher(lower) than its natural frequency. This phe- ing a physical understanding of frustrated random systems,
nomenon is called the “acceleratididleceleration effect”  because the presence of such an effective self-interaction is
and is of particular interest to researchers in the biologicabne of the characteristics that distinguish frustrated and non-
branch of mathematidd,2]. However, we still do not have a frustrated systems of this type. For equilibrium systems, we
clear understanding of the acceleratiolecelerationeffect;  can rigorously evaluate the effect of the ORT by using the
we need to clarify the basic mechanism of this effect inThouless-Anderson-Palmer framewdrk] and/or by using
coupled oscillator systems. the replica method6]. However, we cannot directly apply
In the first part of this paper, we treat general oscillatorthese systematic methods to nonequilibrium coupled-
models coupled weakly by general coupling terms accordingscillator systems. While we can define a formal Hamil-
to Ermentrout[3], and we derive one-dimensional phasetonian function on such systems, Perez and Ritort demon-
equations from original equations of high-dimensional dy-strated that the ground states of such a Hamiltonian are not
namics. Then, we apply this general method to the radiastationary states of the dynamigcal. Therefore, it is impos-
isochron clock(RIC), which has very simple oscillator dy- sible to construct a theory based on free energy for such
namics onR?, i.e., a unit circle stable orbit. Next, we de- systems. Consequently, to evaluate the macroscopic quanti-
velop a curved isochron clodiCIC) by modifying the RIC, ties in such systems that include an ORElf-consistent
and we derive one-dimensional phase equations fromgignal-to-noise analysi§SSCSNA), which can be applied to
coupled CICs. The CIC also has a unit circle stable orbit. Wesystems without a Hamiltonian function, has been y&dd
demonstrate that the CIC is a very simple model that proThe mathematical treatment of this method is similar to that
vides a clean example of the acceleratidecelerationef-  of the cavity method5]. Results obtained using SCSNA
fect caused by diffusion coupling. Our analysis shows thahave been consistent with those using the replica method, but
the Sakaguchi and Kuramot@®&K) model [4], which is a  this method includes a few heuristic steps. While SCSNA has
mean field model of coupled oscillators, has the minimumproduced some interesting results, they have not been suffi-
mechanism of the acceleratiddeceleratioh effect deeply cient to give a complete understanding of frustrated systems.
related to coupled CICs. The SK model is not frustrated, s€Consequently, many fundamental theoretical questions re-
we need to study how frustrated interactions affect the fremain in the study of such systems. In fact, even the existence
guency of oscillator systems. of the type of self-interaction that can be described by the
In the next part of this paper, we propose a mean fieldORT is the subject of some debd&10].
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Here, we consider two oscillator associative memory dx

models, one with symmetric and the other with asymmetric gt - F), xe R", F:R"—R" 1)
dilution of coupling. These two models used are ideal for

evaluating the effect of the ORT because, with the exceptiorwe assume this system has a stable periodic soluligt)
of the ORT, they have the same order parameter equation@ith period 2r that satisfies

The theory we present reveals a nontrivial phenomenon: os-
cillator rotation in a symmetric diluted model is faster O (H)=F(®(1)), Bt)=B(t+2m). )
(slowep than that in an asymmetric diluted model, even if

the two models have identical macroscopic propertiesThis equation is autonomous or invariant to shifts in the time
Therefore, by comparing the results of the two models,_ W&lomain, sob(t+ ¢) is also a solution for anyp e R/27. In
can extract the effect of the ORT from only the rotation giher words, the periodic solution is irresistant to a temporal

speed of the oscillators. o L shift while it conserves a fixed orbinheutral stability. This
As the random dilution of coupling in associative memorys referred to as “orbit stability.” Hereg stands for the
models is equivalent to the random coupling noise in the‘phase" of the periodic solution.

thermodynamic limit, as revealed by previously described " |t \ve modulate the time constant,

theories of equilibrium system41-13, the present model

is reduced to one for glass oscillatdrs4] in the limit of dx

strong dilution. Therefore, the theory we propose covers two (1-ew) qi F(x), 3
types of frustrated systems, the oscillator associative

memory model and the glass oscillator model. Such modelﬁ1. em h iodi luti ith od (1 —
are typical frustrated nonequilibrium systems with large de- is system has a periodic solution with perio#(@d —sa),

grees of freedom. which can be expressed as
In uniformly coupled oscillators, there is a unique stable

state, i.e., the ferromagnetic state in the phase space. In ran- X(t):q)<

dom systems, there are many stable states in the phase space

(ferromagnetic phases and glass phas&ur theory de-

scribes the mutual entrainment in the ferromagnetic phaseghere &>0. Whenw>0, the period of this system is

(memory retrieval in which most of the oscillators are syn- slightly shorter than z-.

chronized by the strong mutual interaction. If the memory Next, we consider the high-dimensional dynamics of

retrieval process is unsuccessful, the system is in the glag®upled oscillator systems:

phase(spurious memory retrieval and in this phase, the

) : 4

l-csw

system causes quasientrainmgbd], which is regarded as dx; o

weak entrainment compared to that in the ferromagnetic (I-ew) gy =Fi)+ep, i=1...N, ®)
phase. Unfortunately, it is difficult to theoretically analyze

the glass states of nonequilibrium systems because we have N

not yet developed sufficient theoretical tools to capture the p= > Vij (X %), (6)
complicated structures of the glass state in nonequilibrium =0

systems. Therefore, instead of using theoretical analyses, we

have numerically studied quasientrainment in the glass phase X eR" Vjj: R™R"=R", (7)

[14]. We found that the distribution of local fields takes a
“volcanic” form in the glass phas¢14], which implies an  Wherex; is a configuration variable of thi¢h oscillator(with
outbreak of the ergodicity breaking with the ultrametric a total ofN oscillatorg. The ep; is the perturbation, i.e., the
structure of the glass state related to the replica-symmetrgoupling term, which is the sum &f; (i,j=1,... N) rep-
breaking. resenting the interaction from unito uniti. If ep;=0, each

A serious problem with the use of attractor-type networksoscillator continues rotating on a limit-cycle orbit individu-
for solving optimization problems is detecting being trappedally. Thee w; denotes the fluctuation in the individual natural
in a metastable state during the relaxation process. Resulteequency.
obtained from analyzing memory retrieval and spurious If ¢ is sufficiently small, the components of the perturba-
memory retrieval have shown that it is possible to determindion that breaks the shape of the orbit are suppressed by the
whether the retrieval process is successful or not by usingtability of the solution. However, the component of the per-
information about the synchrony/asynchrony. This meangurbation that shifts the phase cannot be suppressed, causing
that we can apply nonequilibrium systems to optimizationthe phase to move to the most “comfortable” position.
problems in order to detect metastable states. The solution of a perturbed systei®) can be represented

as

Il. PHASE EQUATION ui(t) = ®(t+ ¢i(T))+sE(t), r=et, )

In this section, we use the method of Ermentr{it to ) ) ) )
derive a phase equation for coupled oscillators. First, let u¥/hered; is the phase of theth oscillator(with a total ofN
consider the following isolated limit cycle oscillator: oscillatorg, 7 denotes a slowly varying time, angl; is a
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fluctuation caused by the perturbation. In the following deri- de;
vation, 7 and ¢; are considered to be approximately constant ~ (®* (t+ ¢;), ®’ (t+ ¢i))< w;— F)
within a period.

By substituting Eq(8) into Eq. (5), expanding a polyno- N
mial arounds =0, and neglecting the higher order terms, we + D (@ (t+ ¢), Vi [D(t+ ), P(t+ ¢))])
obtain i(#0)
de; =(®* (t+ ¢i)a|—</>iai>
<1>'(t+¢i(r))(wi—d—) _
T = (L5 ®* (t+ ¢;),u))=0. (16)
N
+ > Vil (®(t+ ¢i(7), P+ ¢ (7)) = L¢_ﬁi , (99  Thus, we derive the following phase equation describing the
iz . : slow dynamics of the phase-locking.
N
d deé;
Ly, = g7~ DF(@(t+ ), (10 E—wﬁ—j;) Tii(b— b)), (17)
whereL, is the linearized operator of Eql) around the ~Where Lij () = (@ (1), Vij(D(1), D(t+ $)))/

periodic solution®(t+ ), andDF () is a Jacobi matrix of ~ (®*(1),®'(1)). I';(¢) is referred to as “coupling func-
F(®). A linearized slow dynamics around the periodic solu-tion,” and ; represents the natural frequency of uniBy

tion, ®(t+ ¢), is expressed as using the formal multiple-scale perturbation method, we re-
duce the high-dimensional dynamics of oscillators to a low-
au dimensional representation.
3 L U, (11

Ill. ACCELERATION EFFECT IN DIFFUSIONALLY

where all of the eigenvalues &f, are nonpositive since the COUPLED OSCILLATORS (TWO-BODY SYSTEM)

solution, @(t+ ¢), is stable. We obtain eigenvalue O lof, In this section, we treat general oscillator models coupled
with eigenfunction ®'(t+¢) by differentiating d®/dt  \eakly by diffusional coupling terms. The general theory is
=F(®). This eigenfunction corresponds to the minimal tem-applied to RIC and CIC. Note that RIC and CIC belong to a
poral shift because®(t+¢+e)=d(t+¢)+e®'(t+¢). class of the Stuart-Landau oscillafd5]. By analyzing two-

We assume there are no other eigenfunctions for eigenvalugody systems of coupled RICs and coupled CICs, we clarify

0 in the space of the periodic function, so, the general mechanism of the acceleratideceleratioh ef-
) fect in coupled oscillator systems.
kerlL =spaq®’(t+¢)}. (12 We consider a system of two oscillators coupled by weak
diffusion:
This assumption is equivalent to that for the orbit stability of
(I)(t + (ﬁ,) . Xm
We define an inner product of twa-dimensional (1=ewy) g =F(X) +ea(x=X),
2r-periodic functions as (18)
dx,
2m (1-ewy)—==F(Xz) +ea(Xy—Xa),
(La®)wa(V)= | dto (1) Tv,(1). (13 dt
whereo is the diffusion coefficient representing the coupling
The adjoint operatoll. % , of L, is defined by strength. o .
Based on the analysis in Sec. Il, we can derive the fol-
<u1,L¢u2>=(Lj,ul,u2). lowing phase equation describing the slow dynamics of

phase locking,
We can explicitly obtain the adjoint operator bgi as

d
d %:wl-f—(]’r((ﬁz_(ﬁl)'
L =—g; ~DF(@(t+ )" (14) d¢g, -

F:wﬁ'ﬂ'r(d’l_d’z),
From Fredholm’s alternativgs], there is a®* that spans a

kernel of L} in the space of the periodic function, so wherel(¢) =(®* (1), D(t+ p) — D(t) )/{D* (1), D' (1)).
In the special case, these two oscillators are mutually
kerLy =spad®* (t+ ¢)}. (15 locked and are acceleratédieceleratedby the effect of dif-

fusional coupling. We term this phenomenon “the accelera-
Taking the inner product betwed* (t+ ¢;) and Eq.(9), tion (deceleratioheffect.” We next derive the conditions for
we obtain it.
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We can express phase-locking solution of Etp) as

PU(T) =0Tt 9, GAT)=0T+ N, n=n— 79,
(20) Isochron

wherew, 74, andn, are constant. Whear=0, the natural

periods of the two oscillators aren2(1+¢cw;) and 27/(1

+ew,), respectively. On the other hand, when the two os-

cillators are mutually lockedd«+# 0), their periods are equal Isochron
to 27/(1+ e w). Here, we assume (@)

1> wy. (21

This assumption does not lose the generality of our theory. o
To obtain the parameter regions of the acceleratasy

celeration effect, we need to define the effect. One definition

for the effect is the following. Ifo>(w,+ w,)/2, the two

oscillators are locked at a speed faster than their mean natu-

ral rotation speed. This condition is defined as “accelera-

tion.” If w<(w;+ w1)/2, the two oscillators are locked at a

speed slower than their mean natural rotation speed. This is (b)

defined as “deceleration.” However, in this section, we focus

on a more radical situation. FIG. 1. (@ Schematic diagram of two diffusionally coupled
If >w,, the two oscillators are locked at a speed fastefR!Cs and(b) of two diffusionally coupled CICs.

than either of their natural rotation speeds. This condition is

defined as “acceleration.” liv<w,, the two oscillators are

locked at a speed slower than either of their natural rotatio

speeds. This is defined as “deceleration. W< w< w4, the

two oscillators are locked at a speed midway between the

natural rotation speeds. This condition is called the “mediumPnase- ) ) ) _

state,” and it does not belong to the acceleratidacelera- The RIC is one of the simplest oscillators &%, which

tion) effect. In the following analyses of two-body systems,has a unit circle orbit with period2 and isochron sets that

B
-

Isochron

Next, we apply this general theory to two special models:
RIC and CIC. In general, limit cycle oscillators have the
so-called “isochron,” which is defined as a set of initial
states converging to a oscillatory solution with a common

we use these more radical definitions. are half-lines radiating from the orig[isee Fig. {8)]. RIC is
By substituting Eq(20) into Eqg.(19), we obtain expressed in the polar coordinate system as
w=w1tol(n)=wytol(— 7). (22 r=r(1-r?),
(26)
We can rewrite Eq(22) as =1.
T(g)—T(=n)=— @1~ %2 (23 We schematically study two-body systems with diffusional

coupling; these systems consist of a faster and a slower RIC.

As shown in Fig. 1a), the two oscillators pull each other due
Consequently, we can graphically obtajrfrom Eq.(23) and  to the effect of their diffusional coupling. One is pulled back-
then obtainw from Eg. (22). Since, in general, Eq23)  ward from the isochron, while the other is pulled forward. As
possesses two or more solutions consisting of stable and ug- result, one is decelerated and the other is accelerated
stable fixed points, the following stability condition must be throughout a period. Thus, the two oscillators are locked at a
satisfied: speed midway between their natural rotation speeds.

Next, we describe our proposed CIC, which is defined as

o’ (n)+T'(=n))>0. (24
. _ 2
Given Eq.(21), we obtain the following conditions for the r=r(l-r,
accelerationdeceleratioh effect from Eq.(22): _ (27
=1+ w(r),

ol'(n)>0 (acceleratiop,
wherew(1)=0. The CIC has a unit circle orbit with period
ol'(—7)<0 (deceleration (25) 27 and curved isochron sefsee Fig. 1b)]. Figure 1b)
shows that if there is a phase difference, the oscillators are
These conditions imply that mutual couplings between twaopulled forward from the isochron. This happens because the
oscillators are asymmetric; that ib(#)#1'(— 7). Conse- isochrons of the CIC intersect nonorthogonally with a limit
quently, asymmetric mutual interaction is the essence of theycle. Accordingly, the two oscillators can be accelerated
acceleration(deceleratioh effect. throughout a period by locking them with a phase difference.
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Thus, we should be able to lock two oscillators at a faster " " " T

speed than either of their natural rotation speeds.

This consideration can be applied to the general case of !

weakly diffusionally coupled oscillators. However, in gen-

eral, the limit cycle and isochron sets are not rotation sym-

metric, so the acceleratiaideceleratioh effect must be av-
eraged through a period.
We next derive the coupling function of diffusionally

coupled CICs. A solution on the unit circle orbit is expressed

in the orthogonal coordinate system as follows:

cost
d(t)= sint |- (29
In this case, we can explicitly derivi@* (t):
- 1 [—sint}| @'(1)(cost -
= —_— —+ .
® 2\ cost 47 |\ sint @9
As a result, we obtain the coupling function
I'(np)= ! in( p-+ i
(M= cospe LI+ Bo) —sinfol,
o, T T 30
Bo=tan "——, —5<Bo<5. (30

Here, B, is derived from the intersection angle between the

isochron and the orbit. I1f8,=0, Eqg. (30) corresponds to

weakly coupled RICs. Consequently, this phase reductio

maintains the essence of the accelerafideceleration ef-
fect. We can study the accelerati¢aeceleratiop phenom-
enon of diffusionally coupled CICs by analyzing E®O).
The parameter regions of the acceleratidaceleratioh ef-

fect, which are obtained from the conditions defined by Eqs

(23), (24), and(25) are as follows.

If o>0,
w1 —
siny=— 120 2, —m/2< 5<0,
- g< Bo< — 772_ (acceleration,
.\ (3D
aa T
T Bo<= (deceleration
2 2
If 0<0,
wn—
sinp=— 120_ . mR2<p<,
?< Bo<% (acceleration,
(32
T -7+ 7 .
—5< Bo< (deceleratioin

Figure 2 shows a phase diagram of the accelerdtiecel-
eratior) effect of two diffusionally coupled CICs.

PHYSICAL REVIEW@ES 046223
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FIG. 2. Parameter region of accelerati@eceleratiopeffect of
two diffusionally coupled CICs.

Sakaguchi and Kuramoto proposed a mean field model
(the SK model of coupled oscillator§4]. The acceleration
(deceleration effect is also observed in the SK model from
the point of view of our proposed theory. The SK model is
expressed by

deb, .

where ¢; is the phase of théth oscillator(with a total of N
oscillatorg, and w; represents its natural frequency. The
rquantity.] represents the strength of the mutual coupling. The
quantity B¢ in Eq. (33) represents a uniform bias. Since Eq.
(33) can be interpreted as a system of weakly coupled CICs,
Bo represents the intersection angle between the isochron
and the orbit, as described above. Due to the effect of the
bias caused by the curved isochron sets, the mutual interac-
tion between a pair of oscillators is asymmetric. Such an
unbalanced mutual interaction is the mechanism of the accel-
eration(decelerationeffect. Therefore, we can conclude that
the SK model has the minimum mechanisms for the accel-
eration (deceleratioh effect related to curved isochron sets.
As the SK model is not frustrated, we need to study frus-
trated coupled oscillator systems.

IV. FRUSTRATED COUPLED OSCILLATOR SYSTEMS

In this section, we extend the SK model to frustrated
coupled oscillator systems with large degrees of freedom and
describe the mechanism of the acceleratiecelerationef-
fect unique to frustrated coupled oscillators.

In general, frustrated systems differ from ferromagnetic
ones in that they have the ORT. Here, we focus on the effect
of the ORT on the acceleratigdecelerationthat exists only
in frustrated globally coupled oscillator systems, and in par-
ticular cannot be found in equilibrium systems. To make this
effect clear, it would be best to compare two frustrated sys-
tems that, with the exception of a different quantity of the
ORT, have the same order parameter equations. In addition,
these systems should have a clear correspondence with an
equilibrium system because the effects of the ORT are well
understood in equilibrium systems.
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We thus consider a system with the following form to be This function enables us to use conventional statistical me-
ideal: chanics forXY-spin system$19] to analyze coupled oscil-
" N lators in the equilibrium state. Thus, this system can be
[ . mapped to arXY-spin systen{12,19. In this way, we can
Ez“’ﬁj;) Jij Sin(¢; = i+ Bij + Bo)- (34) make a bridge between the frustrated coupled oscillator sys-
tem and the equilibrium system.
This simple phase equation was obtained by approximating

I'j(#) in Eq. (17) to the lowest frequency component. In V. ORDER PARAMETER EQUATIONS
fact, such systems are commonly used as models of coupled ) ) o
Osci”ator Systemél4_1a' Natura' frequencie@)i}izl ..... N Let us consider Steady states of the SyStem in the lmit

in Eq. (34) are randomly distributed with a density repre- —. Our theory is. based on the condition that there is one
sented byg(w). Also in Eq. (34), J;; and 8;; denote the large cluster of oscillators synchronously locked at frequency
amplitude of coupling from unif to uniti and its delay, ¢! and the number of this cluster scales-a®(N). Under
respectively. In the present study, we have selected the fofhis condition, Daido demonstrated, through a scaling plot
lowing two generalized Hebb learning rules with randomobtained from numerical simulation, that variation in the pa-
dilutions [12] to determineJ;; and 3;; : rameter order scales &(1/\/N) in ferromagnetic systems
with one large synchronous clus{@0]. We thus assume that

. Cij P _ the self-averaging property holds in our system and that the
Kij=Jij expli Bij) = £y 21 e, (35  order parameters are constant in the liit-o. These as-
"o sumptions were also used by Sakaguchi and Kurarpto
o o Redefiningg; according tog; — ¢; + 7 and substituting
& =expion), (36) this into Eq.(34), we obtain
o 1 with probability c, @7 deb, s " N
710 with probability 1-c, — g, teiQ=sin(g)hi—cosgh, (39

where the overbar means the complex conjugate. Th@nereh, represents the so-called “local field,” which is de-
160£%i=1, .. N, and u=1,...p are the phase patterns to be geribed as
stored in the present model and are assigned to random num-

bers with a uniform probability on the intervgd,2#]. u is N _

an index of the stored pattern, apds the total number of hi=hR+ihj=€'%o > K;s;=¢'fo

stored patterns. We define parametefthe loading ratgby S

a=p/N. Whena~0O(1), thesystem is frustrated. Whes p 12 N e _

=0, the system is equivalent to the SK model. The quantity x| >, etmH+ N > > ——gets—as).

cij is the dilution coefficient. Let;;=1 if there is nonzero z ©oiFy

coupling from unit to uniti andc;; =0 otherwise. The num- (40)

ber of fan ins(fan outs is restricted toO(N), i.e., c

~0(1). For convenience, we writg = exp(¢;). The order parameter
Here, we consider both symmetric dilutiofi.e., cj; m#, which is the overlap between the system state

=c;;) and asymmetric dilutiori.e., ¢;; andc;; are indepen- {s;};—; n and embedded pattef&/};_;  \, is defined

dent random variableqd13]. The quantityBy in Eq. (34 as

represents a uniform bias. Since Eg§4) can be interpreted

as a system of weakly coupled CIQ%, represents the inter- 1N

section angle between the isochron and the orbit, as dis- m=g > & (41)

cussed in Sec. lll. Due to the effect of the bias caused by the =t

leJrved lilsochron sets, the mutual interaﬂction betwgen a PA|f, the thermodynamic limit, the effect of the second term of
of oscillators is asymmetric, even i;;=J; and S;; . - . .
Y o Bi Eq. (40), i.e., (1N)222N [(cij—c)/clélElsy, is equiva-

=— ;i . Such an unbalanced mutual interaction is the es: i#i . i ; i
sence of the acceleratigdecelerationheffect, because oscil- lent to that of the effect of additive coupling noifkl-13:
lators are pulled forward from the isochron, as discussed in 1P
g?c(::.sm. If Bo=0, Eq.(34) is equivalent to weakly coupled Kij=Ji; expli Bij) = N 21 §rep+onyp, (42
. m=
There is a close analogy between the phase description of
coupled oscillators and the classie&Y-spin model of mag- Redn;; ~M0,%/N), (43
netic material. Ifw;=0, By=0, J;=J;, and Bj;=—B;i,
we can define the following Lyapnov function on the system: Im 6n;; ~MO0,%/N), (44
1g (1-c)
al(l—
E=—§i2j Jij cog o — i+ Bij)- (39 v2= T (45)
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wherev?/N is the variance of additive coupling noise;; . at 7=0. This assumption is exact in nonfrustrated systems
In the case of symmetric dilutiongn;; is symmetric, i.e., [17]. Under this assumptionp; takes the following form:
on;j=on;;. On the other hand, in the case of asymmetric B 5

dilution, on;; and on;; are independent random variables. In ¢i=w;7+f(w;71), (52

the limit of strong dilution, i.e.c—0, with a/c kept finite,

our system is reduced to a glass oscillator, which correwheref(x) is a periodic function with period 2, andw; is
sponds to the Sherrington-Kirkpatrick model of spin glassthe resultant frequency of asynchronous oscillators into

[21]. Therefore, our theory can cover two types of frustrateqNhich the ORT has been absorb@d. is given by the fol-
systems, the oscillator associative memory system and tr\Swing equation:

glass oscillator system.

In general, the fieldh® and h! involve the ORT corre-
sponding to the effective self-feedbaf®]. We must elimi- :t)i=f~2+(wi—§)
nate the ORT from these fields. Here, we assume that the
local field splits into a “pure” effective local fieldh;=hf
+ih!, and the ORTTs; : Applying the SK theory4] to Eq. (47), we obtain the aver-

age ofs; over w; :

(52

hi=h,+Ts;. (46)

w2 - -
We neglect the complex conjugate term of the ORT, which (si>w—hiJl7ﬂ2d¢g(Q+|hi|sm¢>)cos¢ expli b)
leads to a higher-harmonic term of the coupling function
[22]. This can be done in the present model because we use ~ (™2 cos¢(l—cose) ~ |hy
generalized Hebb learning rulésee Appendix Hence, by +'hif dd’T m
substituting Eq(46) into Eq. (39), we obtain sin” ¢

do; Q

= Ihi
—gp toimQ=sing)R-cogp)hl,  (@47) ‘9( ‘m)]- 3

~ . In this analysis, we focus on the memory retrieval states
Q=Q-T|sin(y), y=argT), (48 in which the configuration has appreciable overlap with the

- condensed patterg' [m!~O(1)] and has little overlap
which does not contain the ORT. The quanti}yrepresents with the uncondensed patterng* for u>1 [m*

the effecti\ie frequency of the synchronous oscillators. We- o(1/,/N)]. Under this assumption, we obtain the contribu-
can regard) as the renormalized version 6, from which  tion of the uncondensed patterns using SCY8Aand de-
the ORT has been removed, €b takes a different value termineh; in a self-consistent mannésee Appendix Fi-
from the observablé€) in general. ThusQ — O represents naIIyL the equations relating the order parametery{, U,
the contribution of the ORT to the accelerati@receleration ~ and{) are obtained using the self-consistent local field:

effect; Q) is one of the order parameters of our theory. In the

. = . . La—iBo=((¥X -0
analysis that follows,h, and I' are obtained in a self- M et o= (X (X1, %23 2)) ), (54)
consistent mannegisee Appendix
Let us consider synchronous oscillators in which Ueil'goz«':l(xl:XZ;Q)>>xl,x21 (55)

d¢;/d7=0 is satisfied in Eq(47). As a result, the stationary

states of the oscillators are satisfied: . .
where ((---)), x, is the Gaussian average ovey and

(o —0)+ /lﬁilz_(wi_ﬁ)z X2, (" ), x,=JDX1DXp- <. The quantity U corre-

= . (49 sponds to the susceptibility, which is the measure of the sen-
il [hil sitivity to external fields. Since the present system possesses
rotational symmetry with respect to the phagg we can

>

=

From Eq.(49), we obtain the following condition for syn-

chronization: safely set the condensed patternéfo=1. Now, h, X, Fy,
andDx;Dx, can be expressed as
[7i[2= (- 0)2, (50) L,
Dx.D _dxdx, X1+X5 c6
If h; does not satisfy Eq50), ¢; continues rotating individu- XX = 2p? ex 202 ) (56)
ally (i.e., desynchronizatignThis condition corresponds to
Eqg. (23) for two coupled oscillators. We assume that the 1-
microscopic memory effect can be neglected in the pP=———— 17, sza( C)' h=|mY + X, +ix,,
limit. In other words, the asymptotic state of the system as 2|1-U|? 2c
T—o0 is assumed to be independent of the initial conditions (57)
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~ ~ (72 ~ ) The distribution of renormalized resultant frequencies
X(Xl’XZ’Q):hJ_W/2d¢9(Q+|h|s'n $)CcoS¢ expli ¢) [Eq. (52)] in the memory retrieval state, which is denoted as
p(w), becomes

~ (™2 cos¢(l—cos
+ihf d¢—¢(_ i s o
0 i’ ¢ P(@)=r 8(w— )
ml) (~ m|” =2
O+ ——|—glO—=——|i, (58 -~ [h|
|g S|ﬂ¢ g S|n¢ ( ) Q+(w—Q) 1+~—~
(0—Q)?
~ o o |'ﬁ| +f Dx,Dx5 = ,
Fﬂxbxgﬂ)=f d¢(gﬂrﬂhbm¢)+——9n¢ / [h|?
— /2 2 l+~—~
(0—0Q)?
xg’(§+|ﬁ|sin¢))cos¢ exp(i ¢) (62
+'f77/2d cos¢(1—cos¢>)[ ((N)+ | ) f - IFIJW Q0@+ [Flsing) ©3
i —_———— —_— r= X1DX sing)cosd.
0 ¢ Sin® ¢ g sing ) 9 $)cosd
—g( O-— ﬂ)] The & function in Eq.(64) indicates the cluster of oscillators
sin¢ synchronously locked at frequendy. The valuer is the
|F1| w2 cos¢(1—cose) ratio between the number of synchronous oscillators and the
+i 7f dp——7—— total number of oscillatorN. The second term in Eq64)
0 sin” ¢ represents the distribution of asynchronous oscillators. From
| | | | the distribution given by quz) the distribution of observ-
x[g ) +g (ﬁ )} (59) able resultant frequenues which is denoted ap(w) be-
|n¢ sing comes

The terms with the coefficientin Egs.(58) and (59) repre- . ~
sent the contribution of asynchronous oscillators to the mac- p(w)=plo—(Q2—-Q)]. (64)
roscopic behavior. The other terms represent the contribution

symmetric diluted systent; can be expressed as theory and previously proposed theoriesgl=0 andg(w)
are symmetric, our theory reduces to the theory proposed by
Fe-ifor aU N a(l—c) U 60 Aonishi et al. [9]:
¢ T 1-u c = (60
~ 1
RV, . _T s 2

In the case of the asymmetric diluted system, on the other X(xl,xz,Q)—hf_ldxg(|h|x) V1=X5, (€9
hand, we have

) alU
—iBo=
I'e 1 .

- 1
(61) F1(X1,X2JQ):I7 ( (|h|x) +uxg "([h]x) | V1=x2,
(66)

h and Q are the renormalized versions bfand ), re-
spectlvely, from which the ORT has been removed, and thughere Q=0 = 0, since F; and U are real numbers. If

h and Q are independent of the ORT. Therefore, the twod(@)=&(w), Bo=0, andc;;=c;;, where the present model
models we consider have identical order parameter equdeduces to aiXY-spin system, we obtain
tions, Egs(54) and(55), written using the term of the renor-

malized quantitiesﬁ and (). From Eq.(48), the difference _h
between the ORTs in Eq#60) and(61) leads to a different X=—=
value for the observabl@ only whenBy# 0. In this way we

are able to clearly separate the effect of the ORT, and there-
fore, by observing the macroscopic paraméleof these two  which coincide with the replica theory of Codk9] and
systems, we can analyze the effect of the ORT qualitativeh\ SCSNA [23]. In addition, in the uniform-system limitg
and quantitatively. —0, our theory reproduces the SK thed#y):

1 — —
F1=—ﬁ1 p(w)=d(w), (67)
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|mtje "Po=|m?| lezl depg(Q +|m?[sin ¢)cose expli ¢)
— /2

COS¢(1—cose)

) 1 2
+||m|f0 dé Sin® ¢

X

g

gl ol g
% Ging) 9 sin ] 68
. |m1|2
g Q-I—(w—Q) \/14‘_—
(0—Q)?
[, me
Q)z

(69

P(w)=rd(w—Q)+

r=|mﬂfjif¢gu)+hnﬂgn¢mo&ﬁ (70

Q=0. (71)

In the limit N—c, models with random dilution are

equivalent to models with additive coupling noigkl-13.

In the limit c— 0 with a/c kept finite, our system is equiva-
lent to a glass oscillator system with complex interaction

The equations relating the order parametend andQ are

|m1|e_iB0:<<X(X1aX2;ﬁ)»xl,xzi (72)
dx,dx, X2+ x5
Dx{DXx,=———exp — , 73
12 X2 Py D( 22 (73
p2=1/2=2—c, h=|m!|+x;+ix,, (74)

X(X1,%2:Q)=h fjidq&g(fz +|h|sin¢)coseg expli ¢)

— (72
+Ihf0 do
<o

CoS¢(1—cosqe)
sin® ¢

~ |h| ~ ||
SN

The above order parameter equations do not contain susc

tibility U.

VI. SIMULATION

A. Acceleration (deceleration effect

PHYSICAL REVIEW@ES 046223

and we used the Euler scheme with a time increment of 0.1,
which gave a sufficiently good approximation compared to

that of smaller time increments. The resultant frequeneies
were calculated using a long time averagedqf; /dr. The
accelerationidecelerationeffect was defined as follows: one
large cluster of oscillators are synchronously locked at a
faster(slowen speed than the mean natural rotation speed of
all the oscillators.

First, we setBy= w/20, c=1.0 (i.e., no dilution), ando
=0.2. Figure 8a) shows|m?!| as a function ofa, and Fig.

3(b) shows() and() as functions ofx in the memory states.

The solid curves were obtained theoretically, and the data
points with error bars represent results obtained by numerical
simulation. As previously discussed, the ORT was removed

from ﬁ, so the value of) differed from that of the observ-

ableQ). The gap betweefd and() in Fig. 3(b) is in propor-
tion to the absolute value of the ORT, as described in Eqg.
(48). Thus, increasing loading ratetended to accelerate all
of the oscillators due to the effect of the ORT. Figure)3
shows() as a function ofw in the spurious memory states,
where() corresponds to the maximum point of a histogram

of w;. Compared to Fig. ®), the profile of the curve in Fig.
3(c) is different from that of the memory states. This is a
very important phenomenon in the context of engineering
because, from the results shown in Fig&)3and 3c), we

-can determine if the recall process is successful or not by

estimating the difference in the rotation speeds of the oscil-
lators. Figure &) shows histograms of the resultant frequen-

cies w; in the memory and spurious memory states, which
were obtained by numerical simulatioa € 0.022). In this
graph, we shifted the center of the peak to 0 and superim-
posed the solid curves obtained theoretically for the memory
states. The theoretical memory-state results are in good
agreement with the simulation ones.

Next, to make confirm that the accelerati@®celeration
effect is caused by the ORT, we analyzed oscillator associa-
tive memory models involving two types of diluted cou-
plings. We setor=0.2, By,= /20, andc=0.5. Figure 4a)
shows() as a function ofa in the memory retrieval states;
the solid curves were obtained theoretically, and the data
points with error bars represent results obtained by numerical
simulation. It shows that the oscillator rotated faster in the
symmetric diluted system than in the asymmetric one. As

previously discussed) in Fig. 4a), which represents the

effective frequency of synchronous oscillators, does not de-

pend on the type of dilution, while the observBdstrongly
epended on it. This dependence was due to the existence of

eﬁ]e ORT. If local fieldh does not contain the ORTLO], plots

obtained from numerical simulations of both models should

fit the curve of). Therefore, the dependence of the observed
Q) on the type of dilution is strong evidence for the existence
of the ORT in the present system. In this figure, we shifted

In the numerical simulations we now discuss, we set thdhe numerical values df at «=0 (in the computer simula-

distribution of natural frequencies as

g(w)=(27c?)  Y2exp — w?20?), (76)

tion) to their corresponding theoretical values @0 in
order to cancel fluctuations in the mean value gifw)
caused by the finite-size effect.
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FIG. 3. Simulated and theoretical results whegF 7/20, 0=0.2, c=1.0, andN=20000. Solid curves were theoretically obtained;
plots were obtained by numerical simulati¢a) |m?| as a function ofx. (b) Q as a function ofr in memory statesc) Q as a function of
« in spurious memory states. To compdkein spurious memory states with that in the memory states, we superimposed theéleiical
the memory stategd) Distribution of resultant frequenciaes; in memory and spurious memory statess 0.022. The center of thé peak
shifted to 0.

Figures 4b) and 4c) show the distributions of the result- dependence leads to a difference in the rotation speeds of the
ant frequencies for the symmetric and asymmetric dilutionoscillators for the two cases, as shown in Figp)4
systems, respectively. The theoretical res(dtdid curve are
in good agreement with the simulated dihéstogram. From
the results given in Figs.(B) and 4c), the distribution of the
resultant frequencies for the symmetric diluted system is In the numerical simulations described here, we used a
identical to that for the asymmetric diluted system, exceprandom symmetric coupling system instead of the symmetric
for differences in positions caused by the ORT. We thus conediluted system. We randomly chose those couplings using
clude that the mean field, of the symmetric diluted system two probability functions:J;; cos(g;)~M1N,»*/N) and
is identical to that of the asymmetric diluted system, sice Jij SiN(Bj)~M1N ',VZ/N)* where we restrict mutual cou-
reflects the distribution of resultant frequencies, as repreP!ings to symmetric ones); exp(/;)=J; exp(~if;) and set
sented by Eq(64). Figures %a) and §b) show |m!| as a Bo=0. Figure 6 shows a phase diagram in the’(, o, »)
function of & for the symmetric and asymmetric diluted sys- SPace, which was obtained by numerically solving the order
tems, respectively. The solid curves were obtained theoretParameter equatio(v2). A cross-section of this curved sur-
cally, and the data plots represent the results obtained frofficé atv=0 is equal to a result of the SK thed]. Figures
numerical simulations. As the figures show, the critical/(®, 7(b), 7(c), and 7d) display|m’| as a function ofr for
memory capacities of the two models are equal. various values of; the solid curves were obtained theoreti-

Consequently, symmetric and asymmetric diluted system§2@lly, and the data points show results obtained by numerical
have the same macroscopic properties, with the exception gimulation. Figures @ and &b) show the distributions of
the acceleratiofdeceleratioheffect caused by the ORT. The the resultant frequencies; in the ferromagnetic state. As
quantity of the ORT depends on the type of dilution, and thisFigs. 7 and 8 reveal, whejm!| was small, the theoretical

B. Glass oscillators

046223-10



ACCELERATION EFFECT OF COUPLED OSCILLATOR SYSTEMS PHYSICAL REVIEW@S 046223
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FIG. 4. Difference between symmetric and asymmetric dilution systhirst0 000, 0=0.2, B,=7/20, andc=0.5.(a) () as a function
of «. (b) Distribution of resultant frequencies for symmetric dilution systea=(.02). (c) Distribution of resultant frequencies for
asymmetric dilution systema(=0.02).

curves did not fit the simulation results very well. We sur- C. Properties of spurious memory state

mise that the gap between the simulation results and theoret- Here, we examine the properties of spurious memory
ical results might have been caused by the ergodicity breaksi ias  1n the following analyses, we set=0.5,

ing with the ultrametric structure of the glass states; this:0_025, 0=0.16, andB,=0.

breaking is related to replica-symmetry breakirg—26.  Figures ®a), 9(d), 9(b), and 9(B) show histograms of
Unfortunately, our theory do§§ not capture the ultrametrlcresultant frequencies; in memory states and superimpose
structure of the glass states; it focuses only on one of th

pure states in the phase space. In the next section, we Wélsg,ogrr;ms Qf"a'r; s_{)tjhrlouts m?mory ?t?;es.rflgure(bpl?ndt th
explain the glass phase in detail. (b") show in detail the structures of the sharp peaks at the

centerw=0 in Figs. 9a) and 9(4), respectively. Figures

1 1%11“_."”
Q a ! ]
0.8 « 0.8 7
0.6 0.6
1 1
m m §
0.4 va 0.4
® * o
iy
X
021 symmetry 18 ; . 021 asymmetry ! 2 g '
R | B 41|
% 0005 001 0015 002 0025 003 O 0005 001 0015 002 0025 003

(@)

FIG. 5. |m!| as a function ofa. Solid curves were obtained theoretically, and data points were obtained by numerical simMation;

(b)

=10000, 0=0.2, By= /20, andc=0.5. () Symmetric dilution systemb) Asymmetric dilution system.
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This phenomenon corresponds to the so-caljedsientrain-
mentobserved in the glass oscillator systgtd]. As shown
in Figs. 9a) and 9(&), the degree of asynchronous oscilla-
tors in the spurious memory states is larger than that in the
memory states. As the results obtained from analyses of the
system in the memory and spurious memory states reveal,
we can determine if the recall process is successful or not by
using information about the degrees of the synchronous os-
cillators. Note that it is difficult for attractor-type networks
'\) 0.6 5% 0 gsed to solve optimizatio_n problems to_detect being trz_ipped
in a metastable state during the relaxation process. This new
FIG. 6. Phase diagram inrhl|,o,v) space B,=0) of spin  finding indicates that a class of nonequilibrium systems can
glass model. potentially be used to address the detection of metastable
states.

9(a) and 9b) correspond to the cases of asymmetric diluted Figures 1Qa), 10(b), 10(c), and 1Qd) show histograms of

systems, and Figs. 9(aand 9(B) correspond to the cases of Eihe at;ﬁomter valtutta of Ié)i(;]al f'§:|d‘| Irn thitmen:orr%/ and spu- .
symmetric diluted systems. ous memory states. Since the present system possesses ro-

P . : tational symmetry with respect to the phage, we can
As sh Figs. I

S S own n Figs ei? andj(a), " _memory retrieva safely define the condensed patterrfé\s 1;i.e., the gauge
states, a singlé peak exists ato=0, which corresponds to

! transformation can be performed on variables of the con-
a large cluster of synchronous oscillators, and asynchronouH;ensed pattern. After the gauge transformation, if the system
oscillators are symmetrically distributed around theeak. '

I X is in the memory states, the histogram of local fiélds
On the other hand, as shown in Figsa)9and 9(a), in given as a two-dimensional isotropic Gaussiamatm? in

spurious memory states, a sharp peak existmat0. As  the complex plane. However, the histogramhah the spu-
Figs. 9b) and 9(B) reveal, the peak of the spurious memory rious memory state takes a “volcanic” form arouhe-0 in
states atw=0 is gentler than that of the memory retrieval the complex plane. Such a histogram form for the local field
states. These gentle peak indicates that the entrainment in thes also observed in the glass oscillator sysfédi. It is
glass phase is weaker than that in the ferromagnetic phaseell-known that in equilibrium systems, the spin glass states
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FIG. 8. Distribution of resultant frequenci% in ferromagnetic state¢a) v=0.15, 0=0.36, 8,=0.(b) v=0.45, 6=0.28, B,=0.

have an ultrametric tree structuf24,2§. This structure of As mentioned above, our theory does not capture the ul-
the spin glass states can be expressed using the replica sytrametric structure of the glass states; it focuses only on one
metric breaking scheme in replica theory, which is based omwf the pure states in the phase space. This is because SCSNA
a multicascade Gaussian process for generating the loca based on the Gaussian ansatz for the local field, which is
field [25]. We surmise that even in the nonequilibrium sys-deeply related to replica symmetric approximation in replica
tems proposed here, a multicascade Gaussian process in tiveory[8]. Even in the spurious memory state, SCSNA and
glass states results in a non-Gaussian distribution of the locaéplica theory under replica symmetric approximation give

field, as shown in Figs. 18), 10(b), 10(c), and 1@d). the probability distribution of the local field as a single
100 g g N y y 10000
10 1 1000

g(o)

1o SPUrIQUS state:} memory state

10

L%n'erngl:’y staté

0.01 i
g(o
0.001 0.1
. . . . -0.02 -0.01 0 0.01 0.02
(a) (b)
10— ; - ; ; 10000
10f 1 1000
g(w)
1y l00f  spurious stat€ memory state
0.1f 10 '
0.01f ip
o001} | ] H o1f
-0.4 02 -0.02 -0.01 0 0.01 0.02

(@) ' ‘ (b')

FIG. 9. Distribution of resultant frequencie_$ in memory and spurious memory states:0.5, «=0.025, ¢=0.16, and3,=0; (b) and
(b") show in detail the structure of the sharp peaks at the carted of 9 in (a) and (&), respectively(a) and(b) asymmetry dilution; (8
and (B) symmetry dilution.
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FIG. 10. Distribution of local field in memory and spurious memory staigs; 0. (a) and(b) show results of numerical simulation for
systems with symmetry dilutior(t) and(d) show those of systems with asymmetry dilution.
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Gaussian ah= 0 in the complex plane. However, no one hasthe ORT, which is unique to frustrated systems, plays an
been able to explain the ultrametric structure of the glasémportant role in the acceleratiddeceleratiopeffect. Com-
states in the SCSNA framework. Therefore, to properly anaparing the two models, we extracted the effect of the ORT
lyze the systems in spurious statgtass statgswe need to  only to the rotation speed of the oscillators.

extend the present theory to a more general theory, one that The acceleratiorideceleration effect caused by the ORT

treats an ultrametric structure. is peculiar to nonequilibrium systems, since this effect only
occurs whenBy#0. There has been fundamental disagree-
VII. CONCLUSION ment regarding the existence of the ORT in a typical system

We have proposed a CIC based on the radial isochrofio'responding to our model wit§,=0 and a symmetric
clock that provides a clean example of the acceleratin ~ 9(«) [9,10]. From the results of this work we conclude that
celeration effect. By analyzing two-body system of coupled €ven if 8o=0 andg(w) is symmetric, the ORT exists in the
CICs, we showed that an unbalanced mutual interactioare local field given by Eq40). In this case, the effect of
caused by curved isochron sets is the minimum mechanisiiieé ORT is not detectable because it cancels out of(£4.
needed for generating the acceleratioleceleration effect As the results illustrated in FigS® and b) reveal, the
in coupled oscillator systems. From this we determined thagritical memory capacity of the asymmetric diluted systems
the SK model, which is a mean field model of coupled os-obtained from numerical simulation is slightly smaller than
cillators without frustration, has such a mechanism. To studyhat of the symmetric ones, because asymmetric dilution
frustrated coupled oscillator systems, we extend the SKoreaks the detailed balance of the system, which weakens the
model to two oscillator associative memory models, one withstability of the memory states. There is yet no theory to
symmetric and the other with asymmetric dilution of cou-rigorously treat a system with asymmetric interaction. Most
pling, which also have the minimum mechanism for the actheoretical studies of asymmetric systems are based on the
celeration(decelerationeffect. We theoretically showed that naive assumption that there are such steady states as equilib-
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rium states of symmetric systerfis3]. Next, we considemgs(e;;h;,Q,w;), which represents a

In the field of neuroscience, a growing number of re- . . o o~
searchers are becoming interested in the synchrony of oscﬁ—ond't'clnaL probability - distribution  of ngg(¢i :h; . Q2).

latory neural activities because physiological evidence ofgs(¢i:hi,Q,w;) is governed by the following Liouville
their existence has been obtained in the visual cortex of a cgguation:

[27,28. Much experimental and theoretical research has
been done on the functional role of synchronization. One of ¢ o~ -~ ~R

the more interesting hypotheses is caléguchronized popu- 77 Nas( @100, 0) == a_(j,i{[“’i —Q=sin(g)hy

lation coding which was proposed by Phillips and Singer _

[29]. However, its validity is highly controversial. In this +cog ¢)h! Ings( i ;hi . Q, )}
paper, we numerically showed the possibility of determining

if the recall process was successful or not by using informa- (A2)
tion about the synchrony/asynchrony. If we consider infor-
mation processing in brain systems, the solvabiemodel
presented in this paper may be a good candidate for showing - o~ ~ ~R -1
the validity of a synchronized population coding in the brain. Nas(®i:hi,Q, ;)= Clw;—Q —sin(¢;)hi"+cod ¢;)h;]
According to anatomical and physiological data, the olfac-
tory system can be considered as an associative memory with
oscillatory behavior. There is one particularly interesting Cc=1 f
finding related to our studies. Freeman and Sharda demon-

strated chaotic behavior of olfactory neural systems in re- wi_ﬁ g
sponse to unknown odof80]. We suspect that this chaotic - 1-——. (A3)
behavior is related to the asynchronous behavior of our sys- . (0;j—Q)

tems in spurious memory states. Thus, the present analysis

should strongly affect the debate on the functional role ofThen,n y( ¢; ;Ei ,ﬁ) is expressed as

synchrony.

d

In the limit that 7— oo, the stationary distribution becomes

2ﬁd¢i[wi—ﬁ—sin(¢i)ﬁf+ cog ¢hl]~*
0

o~ 1
APPENDIX: DERIVATION OF ORDER PARAMETER Ngs( ¢ ;h;, Q)= > | _ﬁpmldwig(wi)
EQUATIONS i i

Assuming a pure effective local fielt; , in Eq. (46), we (wi_ﬁ) 1—
performed renormalization of the local field expressed in Eq. (w;i— Q)2

(47). The quantityﬁ in Eq. (47) is the renormalized version Xwi—ﬁ—sin( d))ﬁiRJrcos{ ¢i)F‘i| '

of Q, from which the ORT has been removed. Thhs,s
independent of any macroscopic configuration of unitn
this way, by performing renormalization of the local field, we . .
can reduce large population systems to one-body problem§Veraging S over o, that —is, (s,
Under the assumption formalized in ~E(46), the distribution = fde¢;n(¢, ;Ei ,Q)expli¢), we obtain the following equa-
of s;, which is denoted a®(¢; ;F]i ,Q), can be formally tion:
derived using SK theory.

In the framework of the SK theory, we can split the dis- <s-(ﬁ-)) :ﬁf
tribution of s; into a synchronized part and a desynchronized ™ "/«

part as  n(¢; B, Q) =ng(¢ R, Q)+ g ¢ Ry LQ). T
ng(¢; ;h;,Q) represents the distribution of synchronous os- N o
cillators andngo(¢; ;h;,Q) denotes the distribution of asyn- [hil Jloi - 21> iy

(Ad)

le/ dgig(Q+|[hy|sin ;) cose; expli ¢;)
2

dwig()(w;—Q)

chronous ones. First, we derive(; ;h; ,ﬁ) from Eq. (47) |ﬁ_|2
(d¢; /dr=0) as follows: x| 1-/1- ——=—
(w;—0)?
(L Q)= | deg(w) 8(w;— Q- sin(¢)hRR ~ [ = =
o 8= [ dogton) oG -sina) =Fi [ do,0(B+ Rfsing cos exti )
— /2

+cog ¢)h)=g(Q+hfsin(¢) ) 1—cosdh)
- cos¢;(1—cosg;
~Ti! cod )[R cos ) + Rl sin( )], +'hifo =y

o [hil )_ (ﬁ_ Iﬁil) (A5)
sin g, 9 sing;/ |

w *lhi ko 71’F]=
—§+tan ﬁ$¢is5+tan ﬁ (A1) X1d
1 1
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Note that ifg(ﬁ+x)=g(ﬁ—x), we can neglect the effect
of asynchronous oscillators. Whey{x) = 6(x) and 8y,=0
we obtain

|:z

(si(h))u= (AB)

>

Next, we estimatd; in the framework of SCSNA. In this

PHYSICAL REVIEW E 65 046223

N

h{Me o= > gm+ X on;sj—as.
v(# p) i(#1)

(A13)

Note thatX(* is uncorrelated withe”. We can neglect the
complex conjugate ternV,;, which leads to a higher-

analysis, we focus on the memory retrieval states, in which

the configuration has appreciable overlap with the condensed

pattern&" [m*~0O(1)] and has little overlap with the un-
condensed patterng”* for u>1 [m“~O(1/y/N)]. Under

harmonic term of the coupling functior{22], since
E[£¢/]=0.
From Eg.(A10), we obtain
m#= —E () (A14)

N(1—e'PoU,)

this assumption, we estimate the contribution of the unconSubstituting Eq(A14) into the cross-talk noise of EGA7),

densed patterns using SCSI and determind; in a self-

in the limit N—oo, we can split the cross-talk noise into the

consistent manner. In the first step of SCSNA, we split locaf>aussian random variable and the ORT:

field h; into a signal par{the first term, a cross-talk noise
part (the second terim and a coupling noise pafthe third
term):

N
hie 'Po=glmi+ D) &mA+ 2 onjs;—as;. (A7)

u>1

In the next step, we split the cross-talk noidke second
term) and the coupling noiséhe third term, respectively,

into the Gaussian random variable and the ORT. Equation

(39) implies thats; is a function of local fieldh;, natural
frequencyw; —Q, and timer; that is,

S|=X(hi,wi—Q,T). (A8)
Note thats; is not a function of renormalizeti; and Q;
instead, it is a function of the batg and() in Eq. (39). We

can properly evaluate the ORT with this careful treatment.
Here, we assume that the microscopic memory effect can be

neglected in ther—o limit. In general,X(h;,w;—Q,7) is

not regular. As such, a variation X due to a small pertur-

bation in local fieldh denoteddh is satisfied
dX=u(h,0—Q,7)dh+v(h,0—Q,7dh.  (A9)

Thereforem“~0O(1/\N), u=2 is expressed as

1o 14 '
M= B EX(N 0= 0,7 = o 2 EX U mrelfo
i I

+V, mte Ao, (A10)
1 —

Ui=g > Eetu(hi w0 —Q,7), (A11)

Ve S FE -0, A1

where

X =X(h{*) ;= Q,7),

aN

3, gme=zs ﬁsi , (A15)
1 on _
u=%2 uch,;—Q,7). (A17)

Next, we split the coupling noise term of E@A7) into the
Gaussian random variable and the ORT:
N N

>, onijs;= E an; XM+ sie'PoU,+ sie71Pov,,
j#i j(#i)

(A18)
1 N
> onjonuh? w;—Q,7),  (A9)
“N&)
1 N
> onponjvh w—Q,7),  (A20)
NG
where
XD =X, 0;—0Q,7),
N
hDe=iho= e'm’+ >, Snysc—asi. (A21)
v k(FT.0)

Note thatxi(” is uncorrelated withsn;; . We can also neglect
the complex conjugate teris,, which leads to a higher-
harmonic term of the coupling functior[22], since
E[5n,,5n”] 0. For the symmetric diluted system,
E[onjjon;i]= 212IN, so, in the limitN— o, we can split the
coupling noise term of Eq(A7) into the Gaussian random
variable and the ORT:

N
>, ons;=z"+2v%PoUs;, (A22)
=1
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N _ Substituting Eq(A31) into Eq.(39), we obtain
2= > on; X\, (A23)
i(#0) do: )
| - di:_'+wi—Q:sinqsi{Rde'ﬁO(gilmlJrziA+ziG)]
1
U=§ 2 uthj.0;=Q,7). (h24) +|T|cos ¢+ ¥+ Bo)}

iBo( £l A4 G
For the asymmetric diluted system, we can neglect the ORT —cos¢i{Imle'Po(grm'+ 27+ 27) ]
in the coupling noise term: +|T[sin( i+ i+ Bo)}

N —sind: R eiBo( £mi+ 22+ 28
2 5niij=ZiG, (A25) sing; Rge'Fo(&m™+z7+27) |
=1 —cos¢; Im[e'Po(&lmt+ 20+ 2°)]
N .
L= 5ninJ(i), (A26) —[T[sin(¢+ Bo). (A33)

A
=D Comparing Eq(A30) with Eqg. (A33), we can determine ef-
sinceE[ &n;; on;;]1=0. fective local fieldh, ,
From these manipulations, local fielgl is given by

' he Bo=gmlt A+ 76
he 1Bo=gtmi+ 2+ 28+ Ts;, (A27) hie o= gimit 2 2 (A34)
welfol and we can obtai), which is the renormalized version of
=gy +2v%€'PoU  (symmetrio, (A28) {1,
_ Q=Q—|T|sin(+ Bo). (A35)
ae'Poy )
= 1—eiBoy (asymmetrig, (A29) " These final two results are consistent with the first assump-

tion for a pure effective local fielth; in Eq. (46).
where z'+z° is a random variable of an isotropic two-  Finally, we combine the results obtained from SK theory
dimensional Gaussian that satisfies and SCSNA. We can safely replagéh; ,w;—Q, ) of order

parametersn® andU with Eq. (A5) based orh; :
o

——+1?
2|1-¢€'Poy|? '

E{Re 2+ 27} =E{Im[z+27]°} = 1 1
mi=g 2 EX(h, o= 0,n=5 > &),

E{Rq z]'+z°]Im[ 2"+ %]} =0. (A36)
In the final step of SCSNA, we determine a pure effective a(si(Fi))
local fieldh; in a self-consistent manner. We present &) U= 1 D IX(hi,0i—Q,7) _1 D e
again: N 5 ah; N 4 oh,
(A37)
- %er-—ﬁ:sin #hF—cosg¢h! (A30)
dr " s hie Po=g'mb+ 20+ 28, (A38)

On the other hand, local field; is given b ~
159 Y becauseh; is independent of any microscopic configuration

hie Po=&'mt+ 22+ 28+ |T'|expig)s;, (A31)  of uniti. In conclusion, we can obtain the order parameter
equationg54) and(55). In this way, our derivation process is
y=argl). (A32) complete in a self-consistent manner.
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