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Acceleration effect of coupled oscillator systems
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We have developed a curved isochron clock~CIC! by modifying the radial isochron clock to provide a clean
example of the acceleration~deceleration! effect. By analyzing a two-body system of coupled CICs, we
determined that an unbalanced mutual interaction caused by curved isochron sets is the minimum mechanism
needed for generating the acceleration~deceleration! effect in coupled oscillator systems. From this we can see
that the Sakaguchi and Kuramoto~SK! model, which is a class of nonfrustrated mean field model, has an
acceleration~deceleration! effect mechanism. To study frustrated coupled oscillator systems, we extended the
SK model to two oscillator associative memory models, one with symmetric and the other with asymmetric
dilution of coupling, which also have the minimum mechanism of the acceleration~deceleration! effect. We
theoretically found that theOnsager reaction term~ORT!, which is unique to frustrated systems, plays an
important role in the acceleration~deceleration! effect. These two models are ideal for evaluating the effect of
the ORT because, with the exception of the ORT, they have the same order parameter equations. We found that
the two models have identical macroscopic properties, except for the acceleration effect caused by the ORT. By
comparing the results of the two models, we can extract the effect of the ORT from only the rotation speeds of
the oscillators.
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I. INTRODUCTION

Coupled oscillators are of intrinsic interest in ma
branches of physics, chemistry, and biology. One class
coupled oscillator systems has a property that by mutua
teractions, the oscillatory frequency of an individual unit
made higher~lower! than its natural frequency. This phe
nomenon is called the ‘‘acceleration~deceleration! effect’’
and is of particular interest to researchers in the biolog
branch of mathematics@1,2#. However, we still do not have a
clear understanding of the acceleration~deceleration! effect;
we need to clarify the basic mechanism of this effect
coupled oscillator systems.

In the first part of this paper, we treat general oscilla
models coupled weakly by general coupling terms accord
to Ermentrout@3#, and we derive one-dimensional pha
equations from original equations of high-dimensional d
namics. Then, we apply this general method to the ra
isochron clock~RIC!, which has very simple oscillator dy
namics onR2, i.e., a unit circle stable orbit. Next, we de
velop a curved isochron clock~CIC! by modifying the RIC,
and we derive one-dimensional phase equations f
coupled CICs. The CIC also has a unit circle stable orbit.
demonstrate that the CIC is a very simple model that p
vides a clean example of the acceleration~deceleration! ef-
fect caused by diffusion coupling. Our analysis shows t
the Sakaguchi and Kuramoto~SK! model @4#, which is a
mean field model of coupled oscillators, has the minim
mechanism of the acceleration~deceleration! effect deeply
related to coupled CICs. The SK model is not frustrated,
we need to study how frustrated interactions affect the
quency of oscillator systems.

In the next part of this paper, we propose a mean fi
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theory that can treat a general class of frustrated coup
oscillator systems and use it to clarify the mechanism of
acceleration~deceleration! effect in frustrated coupled oscil
lators. We found that theOnsager reaction term~ORT!,
which describes the effective self-interaction, plays a k
role in the effect. The ORT is of great importance in obta
ing a physical understanding of frustrated random syste
because the presence of such an effective self-interactio
one of the characteristics that distinguish frustrated and n
frustrated systems of this type. For equilibrium systems,
can rigorously evaluate the effect of the ORT by using
Thouless-Anderson-Palmer framework@5# and/or by using
the replica method@6#. However, we cannot directly appl
these systematic methods to nonequilibrium coupl
oscillator systems. While we can define a formal Ham
tonian function on such systems, Perez and Ritort dem
strated that the ground states of such a Hamiltonian are
stationary states of the dynamics@7#. Therefore, it is impos-
sible to construct a theory based on free energy for s
systems. Consequently, to evaluate the macroscopic qu
ties in such systems that include an ORT,self-consistent
signal-to-noise analysis~SCSNA!, which can be applied to
systems without a Hamiltonian function, has been used@8#.
The mathematical treatment of this method is similar to t
of the cavity method@5#. Results obtained using SCSN
have been consistent with those using the replica method
this method includes a few heuristic steps. While SCSNA
produced some interesting results, they have not been s
cient to give a complete understanding of frustrated syste
Consequently, many fundamental theoretical questions
main in the study of such systems. In fact, even the existe
of the type of self-interaction that can be described by
ORT is the subject of some debate@9,10#.
©2002 The American Physical Society23-1
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Here, we consider two oscillator associative memo
models, one with symmetric and the other with asymme
dilution of coupling. These two models used are ideal
evaluating the effect of the ORT because, with the excep
of the ORT, they have the same order parameter equat
The theory we present reveals a nontrivial phenomenon:
cillator rotation in a symmetric diluted model is fast
~slower! than that in an asymmetric diluted model, even
the two models have identical macroscopic propert
Therefore, by comparing the results of the two models,
can extract the effect of the ORT from only the rotati
speed of the oscillators.

As the random dilution of coupling in associative memo
models is equivalent to the random coupling noise in
thermodynamic limit, as revealed by previously describ
theories of equilibrium systems@11–13#, the present mode
is reduced to one for glass oscillators@14# in the limit of
strong dilution. Therefore, the theory we propose covers
types of frustrated systems, the oscillator associa
memory model and the glass oscillator model. Such mod
are typical frustrated nonequilibrium systems with large
grees of freedom.

In uniformly coupled oscillators, there is a unique stab
state, i.e., the ferromagnetic state in the phase space. In
dom systems, there are many stable states in the phase
~ferromagnetic phases and glass phases!. Our theory de-
scribes the mutual entrainment in the ferromagnetic pha
~memory retrieval!, in which most of the oscillators are syn
chronized by the strong mutual interaction. If the memo
retrieval process is unsuccessful, the system is in the g
phase~spurious memory retrieval!, and in this phase, the
system causes quasientrainment@14#, which is regarded as
weak entrainment compared to that in the ferromagn
phase. Unfortunately, it is difficult to theoretically analy
the glass states of nonequilibrium systems because we
not yet developed sufficient theoretical tools to capture
complicated structures of the glass state in nonequilibr
systems. Therefore, instead of using theoretical analyses
have numerically studied quasientrainment in the glass ph
@14#. We found that the distribution of local fields takes
‘‘volcanic’’ form in the glass phase@14#, which implies an
outbreak of the ergodicity breaking with the ultramet
structure of the glass state related to the replica-symm
breaking.

A serious problem with the use of attractor-type netwo
for solving optimization problems is detecting being trapp
in a metastable state during the relaxation process. Re
obtained from analyzing memory retrieval and spurio
memory retrieval have shown that it is possible to determ
whether the retrieval process is successful or not by us
information about the synchrony/asynchrony. This me
that we can apply nonequilibrium systems to optimizat
problems in order to detect metastable states.

II. PHASE EQUATION

In this section, we use the method of Ermentrout@3# to
derive a phase equation for coupled oscillators. First, le
consider the following isolated limit cycle oscillator:
04622
y
c
r
n
s.
s-

f
s.
e

e
d

o
e
ls
-

an-
ace

es

y
ss

ic

ve
e

we
se

ry

s
d
lts
s
e
g
s

s

dx

dt
5F~x!, xPRn, F: Rn→Rn. ~1!

We assume this system has a stable periodic solutionF(t)
with period 2p that satisfies

F8~ t !5F„F~ t !…, F~ t !5F~ t12p!. ~2!

This equation is autonomous or invariant to shifts in the ti
domain, soF(t1f) is also a solution for anyfPR/2p. In
other words, the periodic solution is irresistant to a tempo
shift while it conserves a fixed orbit~neutral stability!. This
is referred to as ‘‘orbit stability.’’ Here,f stands for the
‘‘phase’’ of the periodic solution.

If we modulate the time constant,

~12«v!
dx

dt
5F~x!, ~3!

this system has a periodic solution with period 2p(12«v),
which can be expressed as

x~ t !5FS t

12«v D , ~4!

where 1@«.0. Whenv.0, the period of this system is
slightly shorter than 2p.

Next, we consider the high-dimensional dynamics
coupled oscillator systems:

~12«v i !
dxi

dt
5F~xi !1«pi , i 51, . . . ,N, ~5!

pi5 (
j (Þ i )

N

Vi j ~xi ,xj !, ~6!

xiPRn, Vi j : Rn3Rn→Rn, ~7!

wherexi is a configuration variable of thei th oscillator~with
a total ofN oscillators!. The«pi is the perturbation, i.e., the
coupling term, which is the sum ofVi j ( i , j 51, . . . ,N) rep-
resenting the interaction from unitj to unit i. If «pi50, each
oscillator continues rotating on a limit-cycle orbit individu
ally. The«v i denotes the fluctuation in the individual natur
frequency.

If « is sufficiently small, the components of the perturb
tion that breaks the shape of the orbit are suppressed by
stability of the solution. However, the component of the p
turbation that shifts the phase cannot be suppressed, cau
the phase to move to the most ‘‘comfortable’’ position.

The solution of a perturbed system~5! can be represente
as

ui~ t !5F„t1f i~t!…1«uĩ~ t !, t5«t, ~8!

wheref i is the phase of thei th oscillator~with a total ofN
oscillators!, t denotes a slowly varying time, and«ũi is a
3-2
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ACCELERATION EFFECT OF COUPLED OSCILLATOR SYSTEMS PHYSICAL REVIEW E65 046223
fluctuation caused by the perturbation. In the following de
vation,t andf i are considered to be approximately const
within a period.

By substituting Eq.~8! into Eq. ~5!, expanding a polyno-
mial around«50, and neglecting the higher order terms, w
obtain

F8„t1f i~t!…S v i2
df i

dt D
1 (

j (Þ i )

N

Vi j ~F„t1f i~t!…,F„t1f j~t!…!5Lf i
ũi , ~9!

Lf i
5

d

dt
2DF„F~ t1f i !…, ~10!

where Lf is the linearized operator of Eq.~1! around the
periodic solutionF(t1f), andDF(F) is a Jacobi matrix of
F(F). A linearized slow dynamics around the periodic so
tion, F(t1f), is expressed as

]u

]t
5Lfu, ~11!

where all of the eigenvalues ofLf are nonpositive since th
solution,F(t1f), is stable. We obtain eigenvalue 0 ofLf
with eigenfunction F8(t1f) by differentiating dF/dt
5F(F). This eigenfunction corresponds to the minimal te
poral shift becauseF(t1f1«)8F(t1f)1«F8(t1f).
We assume there are no other eigenfunctions for eigenv
0 in the space of the periodic function, so,

kerLf5span$F8~ t1f!%. ~12!

This assumption is equivalent to that for the orbit stability
F(t1f i).

We define an inner product of twon-dimensional
2p-periodic functions as

^v1~ t !,v2~ t !&5E
0

2p

dtv1~ t !Tv2~ t !. ~13!

The adjoint operator,Lf* , of Lf is defined by

^u1 ,Lfu2&5^Lf* u1 ,u2&.

We can explicitly obtain the adjoint operator ofLf i
as

Lf* 52
d

dt
2DF„F~ t1f!…T. ~14!

From Fredholm’s alternative@3#, there is aF* that spans a
kernel ofLf* in the space of the periodic function, so

kerLf* 5span$F* ~ t1f!%. ~15!

Taking the inner product betweenF* (t1f i) and Eq.~9!,
we obtain
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^F* ~ t1f i !,F8~ t1f i !&S v i2
df i

dt D
1 (

j (Þ i )

N

^F* ~ t1f i !,Vi j @F~ t1f i !,F~ t1f j !#&

5^F* ~ t1f i !,Lf i
ũi&

5^Lf i
* F* ~ t1f i !,ũi&50. ~16!

Thus, we derive the following phase equation describing
slow dynamics of the phase-locking.

df i

dt
5v i1 (

j (Þ i )

N

G i j ~f j2f i !, ~17!

where G i j (f)5^F* (t),Vi j „F(t),F(t1f)…&/
^F* (t),F8(t)&. G i j (f) is referred to as ‘‘coupling func-
tion,’’ and v i represents the natural frequency of uniti. By
using the formal multiple-scale perturbation method, we
duce the high-dimensional dynamics of oscillators to a lo
dimensional representation.

III. ACCELERATION EFFECT IN DIFFUSIONALLY
COUPLED OSCILLATORS „TWO-BODY SYSTEM …

In this section, we treat general oscillator models coup
weakly by diffusional coupling terms. The general theory
applied to RIC and CIC. Note that RIC and CIC belong to
class of the Stuart-Landau oscillator@15#. By analyzing two-
body systems of coupled RICs and coupled CICs, we cla
the general mechanism of the acceleration~deceleration! ef-
fect in coupled oscillator systems.

We consider a system of two oscillators coupled by we
diffusion:

~12«v1!
dx1

dt
5F~x1!1«s~x22x1!,

~18!

~12«v2!
dx2

dt
5F~x2!1«s~x12x2!,

wheres is the diffusion coefficient representing the couplin
strength.

Based on the analysis in Sec. II, we can derive the
lowing phase equation describing the slow dynamics
phase locking,

df1

dt
5v11sG~f22f1!,

~19!
df2

dt
5v21sG~f12f2!,

whereG(f)5^F* (t),F(t1f)2F(t)&/^F* (t),F8(t)&.
In the special case, these two oscillators are mutu

locked and are accelerated~decelerated! by the effect of dif-
fusional coupling. We term this phenomenon ‘‘the accele
tion ~deceleration! effect.’’ We next derive the conditions fo
it.
3-3
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We can express phase-locking solution of Eq.~19! as

f1~t!5vt1h1 , f2~t!5vt1h2 , h5h22h1 ,
~20!

wherev, h1, andh2 are constant. Whens50, the natural
periods of the two oscillators are 2p/(11«v1) and 2p/(1
1«v2), respectively. On the other hand, when the two
cillators are mutually locked (sÞ0), their periods are equa
to 2p/(11«v). Here, we assume

v1.v2 . ~21!

This assumption does not lose the generality of our theo
To obtain the parameter regions of the acceleration~de-

celeration! effect, we need to define the effect. One definiti
for the effect is the following. Ifv.(v11v1)/2, the two
oscillators are locked at a speed faster than their mean n
ral rotation speed. This condition is defined as ‘‘accele
tion.’’ If v,(v11v1)/2, the two oscillators are locked at
speed slower than their mean natural rotation speed. Th
defined as ‘‘deceleration.’’ However, in this section, we foc
on a more radical situation.

If v.v1, the two oscillators are locked at a speed fas
than either of their natural rotation speeds. This condition
defined as ‘‘acceleration.’’ Ifv,v2, the two oscillators are
locked at a speed slower than either of their natural rota
speeds. This is defined as ‘‘deceleration.’’ Ifv2<v<v1, the
two oscillators are locked at a speed midway between t
natural rotation speeds. This condition is called the ‘‘medi
state,’’ and it does not belong to the acceleration~decelera-
tion! effect. In the following analyses of two-body system
we use these more radical definitions.

By substituting Eq.~20! into Eq. ~19!, we obtain

v5v11sG~h!5v21sG~2h!. ~22!

We can rewrite Eq.~22! as

G~h!2G~2h!52
v12v2

s
. ~23!

Consequently, we can graphically obtainh from Eq.~23! and
then obtainv from Eq. ~22!. Since, in general, Eq.~23!
possesses two or more solutions consisting of stable and
stable fixed points, the following stability condition must b
satisfied:

s„G8~h!1G8~2h!….0. ~24!

Given Eq.~21!, we obtain the following conditions for the
acceleration~deceleration! effect from Eq.~22!:

sG~h!.0 ~acceleration!,

sG~2h!,0 ~deceleration!. ~25!

These conditions imply that mutual couplings between t
oscillators are asymmetric; that is,G(h)ÞG(2h). Conse-
quently, asymmetric mutual interaction is the essence of
acceleration~deceleration! effect.
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Next, we apply this general theory to two special mode
RIC and CIC. In general, limit cycle oscillators have th
so-called ‘‘isochron,’’ which is defined as a set of initia
states converging to a oscillatory solution with a comm
phase.

The RIC is one of the simplest oscillators onR2, which
has a unit circle orbit with period 2p and isochron sets tha
are half-lines radiating from the origin@see Fig. 1~a!#. RIC is
expressed in the polar coordinate system as

ṙ 5r ~12r 2!,
~26!

u̇51.

We schematically study two-body systems with diffusion
coupling; these systems consist of a faster and a slower R
As shown in Fig. 1~a!, the two oscillators pull each other du
to the effect of their diffusional coupling. One is pulled bac
ward from the isochron, while the other is pulled forward. A
a result, one is decelerated and the other is acceler
throughout a period. Thus, the two oscillators are locked
speed midway between their natural rotation speeds.

Next, we describe our proposed CIC, which is defined

ṙ 5r ~12r 2!,
~27!

u̇511v~r !,

wherev(1)50. The CIC has a unit circle orbit with perio
2p and curved isochron sets@see Fig. 1~b!#. Figure 1~b!
shows that if there is a phase difference, the oscillators
pulled forward from the isochron. This happens because
isochrons of the CIC intersect nonorthogonally with a lim
cycle. Accordingly, the two oscillators can be accelera
throughout a period by locking them with a phase differen

FIG. 1. ~a! Schematic diagram of two diffusionally couple
RICs and~b! of two diffusionally coupled CICs.
3-4
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ACCELERATION EFFECT OF COUPLED OSCILLATOR SYSTEMS PHYSICAL REVIEW E65 046223
Thus, we should be able to lock two oscillators at a fas
speed than either of their natural rotation speeds.

This consideration can be applied to the general cas
weakly diffusionally coupled oscillators. However, in ge
eral, the limit cycle and isochron sets are not rotation sy
metric, so the acceleration~deceleration! effect must be av-
eraged through a period.

We next derive the coupling function of diffusionall
coupled CICs. A solution on the unit circle orbit is express
in the orthogonal coordinate system as follows:

F~ t !5S cost

sint D . ~28!

In this case, we can explicitly deriveF* (t):

F* ~ t !5
1

2p S 2sint

cost D 1
v8~1!

4p S cost

sint D . ~29!

As a result, we obtain the coupling function

G~h!5
1

cosb0
@sin~h1b0!2sinb0#,

b05tan21
v8~1!

2
, 2

p

2
,b0,

p

2
. ~30!

Here,b0 is derived from the intersection angle between
isochron and the orbit. Ifb050, Eq. ~30! corresponds to
weakly coupled RICs. Consequently, this phase reduc
maintains the essence of the acceleration~deceleration! ef-
fect. We can study the acceleration~deceleration! phenom-
enon of diffusionally coupled CICs by analyzing Eq.~30!.
The parameter regions of the acceleration~deceleration! ef-
fect, which are obtained from the conditions defined by E
~23!, ~24!, and~25! are as follows.

If s.0,

sinh52
v12v2

2s
, 2p/2,h,0,

H 2
p

2
,b0,

2p2h

2
~acceleration!,

p1h

2
,b0,

p

2
~deceleration!.

~31!

If s,0,

sinh52
v12v2

2s
, p/2,h,p,

H p2h

2
,b0,

p

2
~acceleration!,

2
p

2
,b0,

2p1h

2
~deceleration!.

~32!

Figure 2 shows a phase diagram of the acceleration~decel-
eration! effect of two diffusionally coupled CICs.
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Sakaguchi and Kuramoto proposed a mean field mo
~the SK model! of coupled oscillators@4#. The acceleration
~deceleration! effect is also observed in the SK model fro
the point of view of our proposed theory. The SK model
expressed by

df i

dt
5v i1

J

N (
j (Þ i )

N

sin~f j2f i1b0!, ~33!

wheref i is the phase of thei th oscillator~with a total ofN
oscillators!, and v i represents its natural frequency. Th
quantityJ represents the strength of the mutual coupling. T
quantityb0 in Eq. ~33! represents a uniform bias. Since E
~33! can be interpreted as a system of weakly coupled CI
b0 represents the intersection angle between the isoch
and the orbit, as described above. Due to the effect of
bias caused by the curved isochron sets, the mutual inte
tion between a pair of oscillators is asymmetric. Such
unbalanced mutual interaction is the mechanism of the ac
eration~deceleration! effect. Therefore, we can conclude th
the SK model has the minimum mechanisms for the ac
eration~deceleration! effect related to curved isochron set
As the SK model is not frustrated, we need to study fru
trated coupled oscillator systems.

IV. FRUSTRATED COUPLED OSCILLATOR SYSTEMS

In this section, we extend the SK model to frustrat
coupled oscillator systems with large degrees of freedom
describe the mechanism of the acceleration~deceleration! ef-
fect unique to frustrated coupled oscillators.

In general, frustrated systems differ from ferromagne
ones in that they have the ORT. Here, we focus on the ef
of the ORT on the acceleration~deceleration! that exists only
in frustrated globally coupled oscillator systems, and in p
ticular cannot be found in equilibrium systems. To make t
effect clear, it would be best to compare two frustrated s
tems that, with the exception of a different quantity of t
ORT, have the same order parameter equations. In addi
these systems should have a clear correspondence wit
equilibrium system because the effects of the ORT are w
understood in equilibrium systems.

FIG. 2. Parameter region of acceleration~deceleration! effect of
two diffusionally coupled CICs.
3-5
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We thus consider a system with the following form to
ideal:

df i

dt
5v i1 (

j (Þ i )

N

Ji j sin~f j2f i1b i j 1b0!. ~34!

This simple phase equation was obtained by approxima
G i j (f) in Eq. ~17! to the lowest frequency component.
fact, such systems are commonly used as models of cou
oscillator systems@14–18#. Natural frequencies$v i% i 51, . . . ,N
in Eq. ~34! are randomly distributed with a density repr
sented byg(v). Also in Eq. ~34!, Ji j and b i j denote the
amplitude of coupling from unitj to unit i and its delay,
respectively. In the present study, we have selected the
lowing two generalized Hebb learning rules with rando
dilutions @12# to determineJi j andb i j :

Ki j 5Ji j exp~ ib i j !5
ci j

cN (
m51

p

j i
mj̄ j

m , ~35!

j i
m5exp~ iu i

m!, ~36!

ci j 5H 1 with probability c,

0 with probability 12c,
~37!

where the overbar means the complex conjugate.
$u i

m% i 51, . . . ,N, and m51, . . . ,p are the phase patterns to b
stored in the present model and are assigned to random n
bers with a uniform probability on the interval@0,2p#. m is
an index of the stored pattern, andp is the total number of
stored patterns. We define parametera ~the loading rate! by
a5p/N. Whena;O(1), thesystem is frustrated. Whena
50, the system is equivalent to the SK model. The quan
ci j is the dilution coefficient. Letci j 51 if there is nonzero
coupling from unitj to unit i andci j 50 otherwise. The num-
ber of fan ins ~fan outs! is restricted toO(N), i.e., c
;O(1).

Here, we consider both symmetric dilution~i.e., ci j
5cji ) and asymmetric dilution~i.e., ci j andcji are indepen-
dent random variables! @13#. The quantityb0 in Eq. ~34!
represents a uniform bias. Since Eq.~34! can be interpreted
as a system of weakly coupled CICs,b0 represents the inter
section angle between the isochron and the orbit, as
cussed in Sec. III. Due to the effect of the bias caused by
curved isochron sets, the mutual interaction between a
of oscillators is asymmetric, even ifJi j 5Jji and b i j
52b j i . Such an unbalanced mutual interaction is the
sence of the acceleration~deceleration! effect, because oscil
lators are pulled forward from the isochron, as discusse
Sec. III. If b050, Eq. ~34! is equivalent to weakly coupled
RICs.

There is a close analogy between the phase descriptio
coupled oscillators and the classicalXY-spin model of mag-
netic material. Ifv i50, b050, Ji j 5Jji , and b i j 52b j i ,
we can define the following Lyapnov function on the syste

E52
1

2 (
i , j

N

Ji j cos~f j2f i1b i j !. ~38!
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This function enables us to use conventional statistical m
chanics forXY-spin systems@19# to analyze coupled oscil
lators in the equilibrium state. Thus, this system can
mapped to anXY-spin system@12,19#. In this way, we can
make a bridge between the frustrated coupled oscillator
tem and the equilibrium system.

V. ORDER PARAMETER EQUATIONS

Let us consider steady states of the system in the limt
→`. Our theory is based on the condition that there is o
large cluster of oscillators synchronously locked at freque
V and the number of this cluster scales as;O(N). Under
this condition, Daido demonstrated, through a scaling p
obtained from numerical simulation, that variation in the p
rameter order scales asO(1/AN) in ferromagnetic systems
with one large synchronous cluster@20#. We thus assume tha
the self-averaging property holds in our system and that
order parameters are constant in the limitN→`. These as-
sumptions were also used by Sakaguchi and Kuramoto@4#.

Redefiningf i according tof i→f i1Vt and substituting
this into Eq.~34!, we obtain

2
df i

dt
1v i2V5sin~f i !hi

R2cos~f i !hi
I , ~39!

wherehi represents the so-called ‘‘local field,’’ which is de
scribed as

hi5hi
R1 ihi

I5eib0 (
j (Þ i )

N

Ki j sj5eib0

3S (
m

p

j i
mmm1

1

N (
m

p

(
j (Þ i )

N
ci j 2c

c
j i

mj̄ j
msj2asi D .

~40!

For convenience, we writesi5exp(ifi). The order paramete
mm, which is the overlap between the system st
$si% i 51, . . . ,N and embedded pattern$j i

m% i 51, . . . ,N , is defined
as

mm5
1

N (
j 51

N

j̄ j
msj . ~41!

In the thermodynamic limit, the effect of the second term
Eq. ~40!, i.e., (1/N)(m

p ( j Þ i
N @(ci j 2c)/c#j i

mj̄ j
msj , is equiva-

lent to that of the effect of additive coupling noise@11–13#:

Ki j 5Ji j exp~ ib i j !5
1

N (
m51

p

j i
mj̄ j

m1dni j , ~42!

Redni j ;N~0,n2/N!, ~43!

Im dni j ;N~0,n2/N!, ~44!

n25
a~12c!

2c
, ~45!
3-6



tri
In

rre
s

te
t

t

ic
on
u

W

h
-

ch
y

-

o
he

a
n

ms

nto

tes
the

u-

en-
sses

ACCELERATION EFFECT OF COUPLED OSCILLATOR SYSTEMS PHYSICAL REVIEW E65 046223
wheren2/N is the variance of additive coupling noisedni j .
In the case of symmetric dilution,dni j is symmetric, i.e.,
dni j 5dnji . On the other hand, in the case of asymme
dilution, dni j anddnji are independent random variables.
the limit of strong dilution, i.e.,c→0, with a/c kept finite,
our system is reduced to a glass oscillator, which co
sponds to the Sherrington-Kirkpatrick model of spin gla
@21#. Therefore, our theory can cover two types of frustra
systems, the oscillator associative memory system and
glass oscillator system.

In general, the fieldshi
R and hi

I involve the ORT corre-
sponding to the effective self-feedback@8#. We must elimi-
nate the ORT from these fields. Here, we assume that
local field splits into a ‘‘pure’’ effective local field,h̃i5h̃i

R

1 i h̃ i
I , and the ORT,Gsi :

hi5h̃i1Gsi . ~46!

We neglect the complex conjugate term of the ORT, wh
leads to a higher-harmonic term of the coupling functi
@22#. This can be done in the present model because we
generalized Hebb learning rules~see Appendix!. Hence, by
substituting Eq.~46! into Eq. ~39!, we obtain

2
df i

dt
1v i2Ṽ5sin~f i !h̃i

R2cos~f i !h̃i
I , ~47!

Ṽ5V2uGusin~c!, c5arg~G!, ~48!

which does not contain the ORT. The quantityṼ represents
the effective frequency of the synchronous oscillators.

can regardṼ as the renormalized version ofV, from which

the ORT has been removed, soṼ takes a different value

from the observableV in general. Thus,V2Ṽ represents
the contribution of the ORT to the acceleration~deceleration!

effect; Ṽ is one of the order parameters of our theory. In t
analysis that follows,h̃i and G are obtained in a self
consistent manner~see Appendix!.

Let us consider synchronous oscillators in whi
df i /dt50 is satisfied in Eq.~47!. As a result, the stationar
states of the oscillators are satisfied:

si5
h̃i

uh̃i u

i ~v i2Ṽ!1Auh̃i u22~v i2Ṽ!2

uh̃i u
. ~49!

From Eq. ~49!, we obtain the following condition for syn
chronization:

uh̃i u2>~v i2Ṽ!2. ~50!

If h̃i does not satisfy Eq.~50!, f i continues rotating individu-
ally ~i.e., desynchronization!. This condition corresponds t
Eq. ~23! for two coupled oscillators. We assume that t
microscopic memory effect can be neglected in thet→`
limit. In other words, the asymptotic state of the system
t→` is assumed to be independent of the initial conditio
04622
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at t50. This assumption is exact in nonfrustrated syste
@17#. Under this assumption,f i takes the following form:

f i5ṽ it1 f ~ṽ it!, ~51!

where f (x) is a periodic function with period 2p, andṽ i is
the resultant frequency of asynchronous oscillators i
which the ORT has been absorbed.ṽ i is given by the fol-
lowing equation:

ṽ i5Ṽ1~v i2Ṽ!A12
uh̃i u2

~v i2Ṽ!2
. ~52!

Applying the SK theory@4# to Eq. ~47!, we obtain the aver-
age ofsi over v i :

^si&v5h̃iE
2p/2

p/2

dfg~Ṽ1uh̃i usinf!cosf exp~ if!

1 i h̃ iE
0

p/2

df
cosf~12cosf!

sin3 f
H gS Ṽ1

uh̃i u
sinf

D
2gS Ṽ2

uh̃i u
sinf

D J . ~53!

In this analysis, we focus on the memory retrieval sta
in which the configuration has appreciable overlap with
condensed patternj1 @m1;O(1)# and has little overlap
with the uncondensed patternsjm for m.1 @mm

;O(1/AN)#. Under this assumption, we obtain the contrib
tion of the uncondensed patterns using SCSNA@8# and de-
termine h̃i in a self-consistent manner~see Appendix!. Fi-
nally, the equations relating the order parametersum1u, U,

andṼ are obtained using the self-consistent local field:

um1ue2 ib05Š^X̃~x1 ,x2 ;Ṽ!&‹x1 ,x2
, ~54!

Ue2 ib05Š^F1~x1 ,x2 ;Ṽ!&‹x1 ,x2
, ~55!

where Š^•••&‹x1 ,x2
is the Gaussian average overx1 and

x2 , Š^•••&‹x1 ,x2
5**Dx1Dx2•••. The quantity U corre-

sponds to the susceptibility, which is the measure of the s
sitivity to external fields. Since the present system posse
rotational symmetry with respect to the phasef i , we can
safely set the condensed pattern toj i

151. Now, h̃, X̃, F1,
andDx1Dx2 can be expressed as

Dx1Dx25
dx1dx2

2pr2
expS 2

x1
21x2

2

2r2 D , ~56!

r25
a

2u12Uu2
1n2, n25

a~12c!

2c
, h̃5um1u1x11 ix2 ,

~57!
3-7



a
tio
th

th

hu

wo
u
-

er

e

as

s

the

rom

ent

by

l

TORU AONISHI, KOJI KURATA, AND MASATO OKADA PHYSICAL REVIEW E 65 046223
X̃~x1 ,x2 ;Ṽ!5h̃E
2p/2

p/2

dfg~Ṽ1uh̃usinf!cosf exp~ if!

1 i h̃E
0

p/2

df
cosf~12cosf!

sin3 f

3H gS Ṽ1
uh̃u

sinf
D 2gS Ṽ2

uh̃u
sinf

D J , ~58!

F1~x1 ,x2 ;Ṽ!5E
2p/2

p/2

dfS g~Ṽ1uh̃usinf!1
uh̃u
2

sinf

3g8~Ṽ1uh̃usinf! D cosf exp~ if!

1 i E
0

p/2

df
cosf~12cosf!

sin3 f
H gS Ṽ1

uh̃u
sinf

D
2gS Ṽ2

uh̃u
sinf

D J
1 i

uh̃u
2 E

0

p/2

df
cosf~12cosf!

sin4 f

3H g8S Ṽ1
uh̃u

sinf
D 1g8S Ṽ2

uh̃u
sinf

D J . ~59!

The terms with the coefficienti in Eqs.~58! and ~59! repre-
sent the contribution of asynchronous oscillators to the m
roscopic behavior. The other terms represent the contribu
of the cluster of synchronous oscillators. In the case of
symmetric diluted system,G can be expressed as

Ge2 ib05
aU

12U
1

a~12c!

c
U. ~60!

In the case of the asymmetric diluted system, on the o
hand, we have

Ge2 ib05
aU

12U
. ~61!

h̃ and Ṽ are the renormalized versions ofh and V, re-
spectively, from which the ORT has been removed, and t

h̃ and Ṽ are independent of the ORT. Therefore, the t
models we consider have identical order parameter eq
tions, Eqs.~54! and~55!, written using the term of the renor

malized quantitiesh̃ and Ṽ. From Eq.~48!, the difference
between the ORTs in Eqs.~60! and ~61! leads to a different
value for the observableV only whenb0Þ0. In this way we
are able to clearly separate the effect of the ORT, and th
fore, by observing the macroscopic parameterV of these two
systems, we can analyze the effect of the ORT qualitativ
and quantitatively.
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The distribution of renormalized resultant frequenciesṽ
@Eq. ~52!# in the memory retrieval state, which is denoted
p̃(ṽ), becomes

p̃~ṽ !5rd~ṽ2Ṽ!

1E Dx1Dx2

gS Ṽ1~ṽ2Ṽ!A11
uh̃u2

~ṽ2Ṽ!2
D

A11
uh̃u2

~ṽ2Ṽ!2

,

~62!

r 5E Dx1Dx2uh̃u E
2p/2

p/2

dfg~Ṽ1uh̃usinf!cosf. ~63!

Thed function in Eq.~64! indicates the cluster of oscillator

synchronously locked at frequencyṼ. The valuer is the
ratio between the number of synchronous oscillators and
total number of oscillatorsN. The second term in Eq.~64!
represents the distribution of asynchronous oscillators. F
the distribution given by Eq.~62!, the distribution of observ-
able resultant frequenciesv̄, which is denoted asp(v̄), be-
comes

p~v̄ !5 p̃@v̄2~V2Ṽ!#. ~64!

We now consider the relationships between the pres
theory and previously proposed theories. Ifb050 andg(v)
are symmetric, our theory reduces to the theory proposed
Aonishi et al. @9#:

X̃~x1 ,x2 ;Ṽ!5h̃E
21

1

dxg~ uh̃ux!A12x2, ~65!

F1~x1 ,x2 ;Ṽ!5E
21

1

dxS g~ uh̃ux!1
uh̃u
2

xg8~ uh̃ux! DA12x2,

~66!

where Ṽ5V50, since F1 and U are real numbers. If
g(v)5d(v), b050, andci j 5cji , where the present mode
reduces to anXY-spin system, we obtain

X̃5
h̃

uh̃u
, F15

1

2uh̃u
, p~v̄ !5d~v̄!, ~67!

which coincide with the replica theory of Cook@19# and
SCSNA @23#. In addition, in the uniform-system limit,a
→0, our theory reproduces the SK theory@4#:
3-8
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um1ue2 ib05um1u E
2p/2

p/2

dfg~Ṽ1um1usinf!cosf exp~ if!

1 i um1u E
0

p/2

df
cosf~12cosf!

sin3 f

3H gS Ṽ1
um1u
sinf D2gS Ṽ2

um1u
sinf D J , ~68!

p~v̄ !5rd~v̄2V!1

gS V1~v̄2V!A11
um1u2

~v̄2V!2
D

A11
um1u2

~v̄2V!2

,

~69!

r 5um1u E
2p/2

p/2

dfg~V1um1usinf!cosf, ~70!

Ṽ5V. ~71!

In the limit N→`, models with random dilution are
equivalent to models with additive coupling noise@11–13#.
In the limit c→0 with a/c kept finite, our system is equiva
lent to a glass oscillator system with complex interactio

The equations relating the order parametersum1u andṼ are

um1ue2 ib05Š^X̃~x1 ,x2 ;Ṽ!&‹x1 ,x2
, ~72!

Dx1Dx25
dx1dx2

2pn2
expS 2

x1
21x2

2

2r2 D , ~73!

r25n25
a

2c
, h̃5um1u1x11 ix2 , ~74!

X̃~x1 ,x2 ;Ṽ!5h̃E
2p/2

p/2

dfg~Ṽ1uh̃usinf!cosf exp~ if!

1 i h̃E
0

p/2

df
cosf~12cosf!

sin3 f

3H gS Ṽ1
uh̃u

sinf
D 2gS Ṽ2

uh̃u
sinf

D J . ~75!

The above order parameter equations do not contain sus
tibility U.

VI. SIMULATION

A. Acceleration „deceleration… effect

In the numerical simulations we now discuss, we set
distribution of natural frequencies as

g~v!5~2ps2!21/2exp~2v2/2s2!, ~76!
04622
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and we used the Euler scheme with a time increment of
which gave a sufficiently good approximation compared

that of smaller time increments. The resultant frequenciesv̄ i

were calculated using a long time average ofdf i /dt. The
acceleration~deceleration! effect was defined as follows: on
large cluster of oscillators are synchronously locked a
faster~slower! speed than the mean natural rotation speed
all the oscillators.

First, we setb05p/20, c51.0 ~i.e., no dilution!, ands
50.2. Figure 3~a! showsum1u as a function ofa, and Fig.

3~b! showsV andṼ as functions ofa in the memory states
The solid curves were obtained theoretically, and the d
points with error bars represent results obtained by numer
simulation. As previously discussed, the ORT was remo

from Ṽ, so the value ofṼ differed from that of the observ

ableV. The gap betweenV andṼ in Fig. 3~b! is in propor-
tion to the absolute value of the ORT, as described in
~48!. Thus, increasing loading ratea tended to accelerate a
of the oscillators due to the effect of the ORT. Figure 3~c!
showsV as a function ofa in the spurious memory states
whereV corresponds to the maximum point of a histogra

of v̄ i . Compared to Fig. 3~b!, the profile of the curve in Fig.
3~c! is different from that of the memory states. This is
very important phenomenon in the context of engineer
because, from the results shown in Figs. 3~b! and 3~c!, we
can determine if the recall process is successful or not
estimating the difference in the rotation speeds of the os
lators. Figure 3~d! shows histograms of the resultant freque
cies v̄ i in the memory and spurious memory states, wh
were obtained by numerical simulation (a50.022). In this
graph, we shifted the center of the peak to 0 and super
posed the solid curves obtained theoretically for the mem
states. The theoretical memory-state results are in g
agreement with the simulation ones.

Next, to make confirm that the acceleration~deceleration!
effect is caused by the ORT, we analyzed oscillator asso
tive memory models involving two types of diluted cou
plings. We sets50.2, b05p/20, andc50.5. Figure 4~a!
showsV as a function ofa in the memory retrieval states
the solid curves were obtained theoretically, and the d
points with error bars represent results obtained by numer
simulation. It shows that the oscillator rotated faster in t
symmetric diluted system than in the asymmetric one.

previously discussed,Ṽ in Fig. 4~a!, which represents the
effective frequency of synchronous oscillators, does not
pend on the type of dilution, while the observedV strongly
depended on it. This dependence was due to the existen
the ORT. If local fieldh does not contain the ORT@10#, plots
obtained from numerical simulations of both models sho

fit the curve ofṼ. Therefore, the dependence of the observ
V on the type of dilution is strong evidence for the existen
of the ORT in the present system. In this figure, we shif
the numerical values ofV at a50 ~in the computer simula-
tion! to their corresponding theoretical values ata50 in
order to cancel fluctuations in the mean value ofg(v)
caused by the finite-size effect.
3-9
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FIG. 3. Simulated and theoretical results whenb05p/20, s50.2, c51.0, andN520 000. Solid curves were theoretically obtaine
plots were obtained by numerical simulation.~a! um1u as a function ofa. ~b! V as a function ofa in memory states.~c! V as a function of
a in spurious memory states. To compareV in spurious memory states with that in the memory states, we superimposed theoreticaV in

the memory states.~d! Distribution of resultant frequenciesv̄ i in memory and spurious memory states,a50.022. The center of thed peak
shifted to 0.
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Figures 4~b! and 4~c! show the distributions of the resul
ant frequencies for the symmetric and asymmetric dilut
systems, respectively. The theoretical results~solid curve! are
in good agreement with the simulated one~histogram!. From
the results given in Figs. 4~b! and 4~c!, the distribution of the
resultant frequencies for the symmetric diluted system
identical to that for the asymmetric diluted system, exc
for differences in positions caused by the ORT. We thus c
clude that the mean field,h̃, of the symmetric diluted system
is identical to that of the asymmetric diluted system, sinch̃
reflects the distribution of resultant frequencies, as rep
sented by Eq.~64!. Figures 5~a! and 5~b! show um1u as a
function ofa for the symmetric and asymmetric diluted sy
tems, respectively. The solid curves were obtained theo
cally, and the data plots represent the results obtained f
numerical simulations. As the figures show, the critic
memory capacities of the two models are equal.

Consequently, symmetric and asymmetric diluted syste
have the same macroscopic properties, with the exceptio
the acceleration~deceleration! effect caused by the ORT. Th
quantity of the ORT depends on the type of dilution, and t
04622
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dependence leads to a difference in the rotation speeds o
oscillators for the two cases, as shown in Fig. 4~a!.

B. Glass oscillators

In the numerical simulations described here, we use
random symmetric coupling system instead of the symme
diluted system. We randomly chose those couplings us
two probability functions:Ji j cos(bij);N(1/N,n2/N) and
Ji j sin(bij);N(1/N,n2/N), where we restrict mutual cou
plings to symmetric ones,Ji j exp(ibij)5Jji exp(2ibji) and set
b050. Figure 6 shows a phase diagram in the (um1u, s, n)
space, which was obtained by numerically solving the or
parameter equation~72!. A cross-section of this curved su
face atn50 is equal to a result of the SK theory@4#. Figures
7~a!, 7~b!, 7~c!, and 7~d! display um1u as a function ofs for
various values ofn; the solid curves were obtained theore
cally, and the data points show results obtained by numer
simulation. Figures 8~a! and 8~b! show the distributions of
the resultant frequenciesv̄ i in the ferromagnetic state. A
Figs. 7 and 8 reveal, whenum1u was small, the theoretica
3-10
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FIG. 4. Difference between symmetric and asymmetric dilution systems;N510 000, s50.2, b05p/20, andc50.5.~a! V as a function
of a. ~b! Distribution of resultant frequencies for symmetric dilution system (a50.02). ~c! Distribution of resultant frequencies fo
asymmetric dilution system (a50.02).
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curves did not fit the simulation results very well. We su
mise that the gap between the simulation results and the
ical results might have been caused by the ergodicity bre
ing with the ultrametric structure of the glass states; t
breaking is related to replica-symmetry breaking@24–26#.
Unfortunately, our theory does not capture the ultrame
structure of the glass states; it focuses only on one of
pure states in the phase space. In the next section, we
explain the glass phase in detail.
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C. Properties of spurious memory state

Here, we examine the properties of spurious mem
states. In the following analyses, we setc50.5, a
50.025, s50.16, andb050.

Figures 9~a!, 9(a8), 9~b!, and 9(b8) show histograms of
resultant frequenciesv̄ i in memory states and superimpo
histograms ofv̄ i in spurious memory states. Figures 9~b! and
9(b8) show in detail the structures of the sharp peaks at
center v̄50 in Figs. 9~a! and 9(a8), respectively. Figures
ion;
FIG. 5. um1u as a function ofa. Solid curves were obtained theoretically, and data points were obtained by numerical simulatN
510 000, s50.2, b05p/20, andc50.5. ~a! Symmetric dilution system.~b! Asymmetric dilution system.
3-11
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9~a! and 9~b! correspond to the cases of asymmetric dilu
systems, and Figs. 9(a8) and 9(b8) correspond to the cases o
symmetric diluted systems.

As shown in Figs. 9~a! and 9(a8), in memory retrieval
states, a singled peak exists atv̄50, which corresponds to
a large cluster of synchronous oscillators, and asynchron
oscillators are symmetrically distributed around thed peak.

On the other hand, as shown in Figs. 9~a! and 9(a8), in
spurious memory states, a sharp peak exists atv̄50. As
Figs. 9~b! and 9(b8) reveal, the peak of the spurious memo
states atv̄50 is gentler than that of the memory retriev
states. These gentle peak indicates that the entrainment i
glass phase is weaker than that in the ferromagnetic ph

FIG. 6. Phase diagram in (um1u,s,n) space (b050) of spin
glass model.
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This phenomenon corresponds to the so-calledquasientrain-
mentobserved in the glass oscillator system@14#. As shown
in Figs. 9~a! and 9(a8), the degree of asynchronous oscill
tors in the spurious memory states is larger than that in
memory states. As the results obtained from analyses of
system in the memory and spurious memory states rev
we can determine if the recall process is successful or no
using information about the degrees of the synchronous
cillators. Note that it is difficult for attractor-type network
used to solve optimization problems to detect being trap
in a metastable state during the relaxation process. This
finding indicates that a class of nonequilibrium systems
potentially be used to address the detection of metast
states.

Figures 10~a!, 10~b!, 10~c!, and 10~d! show histograms of
the absolute value of local fielduhu in the memory and spu
rious memory states. Since the present system possesse
tational symmetry with respect to the phasef i , we can
safely define the condensed pattern asj i

151; i.e., the gauge
transformation can be performed on variables of the c
densed pattern. After the gauge transformation, if the sys
is in the memory states, the histogram of local fieldh is
given as a two-dimensional isotropic Gaussian ath5m1 in
the complex plane. However, the histogram ofh in the spu-
rious memory state takes a ‘‘volcanic’’ form aroundh50 in
the complex plane. Such a histogram form for the local fi
was also observed in the glass oscillator system@14#. It is
well-known that in equilibrium systems, the spin glass sta
FIG. 7. um1u as a function ofs ~solid curves were theoretically obtained; plots were obtained by numerical simulation!. b050, N
52000.
3-12
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FIG. 8. Distribution of resultant frequenciesv̄ i in ferromagnetic states.~a! n50.15, s50.36, b050. ~b! n50.45, s50.28, b050.
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have an ultrametric tree structure@24,26#. This structure of
the spin glass states can be expressed using the replica
metric breaking scheme in replica theory, which is based
a multicascade Gaussian process for generating the
field @25#. We surmise that even in the nonequilibrium sy
tems proposed here, a multicascade Gaussian process
glass states results in a non-Gaussian distribution of the l
field, as shown in Figs. 10~a!, 10~b!, 10~c!, and 10~d!.
04622
m-
n
al

-
the
al

As mentioned above, our theory does not capture the
trametric structure of the glass states; it focuses only on
of the pure states in the phase space. This is because SC
is based on the Gaussian ansatz for the local field, whic
deeply related to replica symmetric approximation in repl
theory @8#. Even in the spurious memory state, SCSNA a
replica theory under replica symmetric approximation g
the probability distribution of the local field as a sing
FIG. 9. Distribution of resultant frequenciesv̄ i in memory and spurious memory states.c50.5, a50.025, s50.16, andb050; ~b! and

(b8) show in detail the structure of the sharp peaks at the centerv̄50 of 9 in ~a! and (a8), respectively.~a! and~b! asymmetry dilution; (a8)
and (b8) symmetry dilution.
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FIG. 10. Distribution of local field in memory and spurious memory states,b050. ~a! and~b! show results of numerical simulation fo
systems with symmetry dilution;~c! and ~d! show those of systems with asymmetry dilution.
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Gaussian ath50 in the complex plane. However, no one h
been able to explain the ultrametric structure of the gl
states in the SCSNA framework. Therefore, to properly a
lyze the systems in spurious states~glass states!, we need to
extend the present theory to a more general theory, one
treats an ultrametric structure.

VII. CONCLUSION

We have proposed a CIC based on the radial isoch
clock that provides a clean example of the acceleration~de-
celeration! effect. By analyzing two-body system of couple
CICs, we showed that an unbalanced mutual interac
caused by curved isochron sets is the minimum mechan
needed for generating the acceleration~deceleration! effect
in coupled oscillator systems. From this we determined t
the SK model, which is a mean field model of coupled o
cillators without frustration, has such a mechanism. To st
frustrated coupled oscillator systems, we extend the
model to two oscillator associative memory models, one w
symmetric and the other with asymmetric dilution of co
pling, which also have the minimum mechanism for the
celeration~deceleration! effect. We theoretically showed tha
04622
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the ORT, which is unique to frustrated systems, plays
important role in the acceleration~deceleration! effect. Com-
paring the two models, we extracted the effect of the O
only to the rotation speed of the oscillators.

The acceleration~deceleration! effect caused by the ORT
is peculiar to nonequilibrium systems, since this effect o
occurs whenb0Þ0. There has been fundamental disagre
ment regarding the existence of the ORT in a typical syst
corresponding to our model withb050 and a symmetric
g(v) @9,10#. From the results of this work we conclude th
even ifb050 andg(v) is symmetric, the ORT exists in th
bare local field given by Eq.~40!. In this case, the effect o
the ORT is not detectable because it cancels out of Eq.~47!.

As the results illustrated in Figs 5~a! and 5~b! reveal, the
critical memory capacity of the asymmetric diluted syste
obtained from numerical simulation is slightly smaller th
that of the symmetric ones, because asymmetric dilut
breaks the detailed balance of the system, which weaken
stability of the memory states. There is yet no theory
rigorously treat a system with asymmetric interaction. Mo
theoretical studies of asymmetric systems are based on
naive assumption that there are such steady states as eq
3-14
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rium states of symmetric systems@13#.
In the field of neuroscience, a growing number of r

searchers are becoming interested in the synchrony of o
latory neural activities because physiological evidence
their existence has been obtained in the visual cortex of a
@27,28#. Much experimental and theoretical research h
been done on the functional role of synchronization. One
the more interesting hypotheses is calledsynchronized popu
lation coding, which was proposed by Phillips and Sing
@29#. However, its validity is highly controversial. In thi
paper, we numerically showed the possibility of determin
if the recall process was successful or not by using inform
tion about the synchrony/asynchrony. If we consider inf
mation processing in brain systems, the solvabletoy model
presented in this paper may be a good candidate for show
the validity of a synchronized population coding in the bra
According to anatomical and physiological data, the olfa
tory system can be considered as an associative memory
oscillatory behavior. There is one particularly interesti
finding related to our studies. Freeman and Sharda dem
strated chaotic behavior of olfactory neural systems in
sponse to unknown odors@30#. We suspect that this chaoti
behavior is related to the asynchronous behavior of our
tems in spurious memory states. Thus, the present ana
should strongly affect the debate on the functional role
synchrony.

APPENDIX: DERIVATION OF ORDER PARAMETER
EQUATIONS

Assuming a pure effective local field,h̃i , in Eq. ~46!, we
performed renormalization of the local field expressed in

~47!. The quantityṼ in Eq. ~47! is the renormalized version
of V, from which the ORT has been removed. Thus,h̃i is
independent of any macroscopic configuration of uniti. In
this way, by performing renormalization of the local field, w
can reduce large population systems to one-body proble
Under the assumption formalized in Eq.~46!, the distribution

of si , which is denoted asn(f i ;h̃i ,Ṽ), can be formally
derived using SK theory.

In the framework of the SK theory, we can split the d
tribution of si into a synchronized part and a desynchroniz

part as n(f i ;h̃i ,Ṽ)5ns(f i ;h̃i ,Ṽ)1nds(f i ;h̃i ,Ṽ).

ns(f i ;h̃i ,Ṽ) represents the distribution of synchronous o

cillators andnds(f i ;h̃i ,Ṽ) denotes the distribution of asyn

chronous ones. First, we derivens(f i ;h̃i ,Ṽ) from Eq. ~47!
(df i /dt50) as follows:

ns~f i ;h̃i ,Ṽ!5E dv ig~v i !d„v i2Ṽ2sin~f i !h̃i
R

1cos~f i !h̃i
I
…5g„Ṽ1h̃i

R sin~f i !

2h̃i
I cos~f i !…@ h̃i

R cos~f i !1h̃i
I sin~f i !#,

2
p

2
1tan21

h̃i
I

h̃i
R

<f i<
p

2
1tan21

h̃i
I

h̃i
R

. ~A1!
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Next, we considernds(f i ;h̃i ,Ṽ,v i), which represents a

conditional probability distribution of nds(f i ;h̃i ,Ṽ).

nds(f i ;h̃i ,Ṽ,v i) is governed by the following Liouville
equation:

]

]t
nds~f i ;h̃i ,Ṽ,v i !52

]

]f i
$@v i2Ṽ2sin~f i !h̃i

R

1cos~f i !h̃i
I #nds~f i ;h̃i ,Ṽ,v i !%.

~A2!

In the limit thatt→`, the stationary distribution becomes

nds~f i ;h̃i ,Ṽ,v i !5C@v i2Ṽ2sin~f i !h̃i
R1cos~f i !h̃i

I #21

C51/E
0

2p

df i@v i2Ṽ2sin~f i !h̃i
R1cos~f i !h̃i

I #21

5
v i2Ṽ

2p A12
uh̃i u2

~v i2Ṽ!2
. ~A3!

Then,nds(f i ;h̃i ,Ṽ) is expressed as

nds~f i ;h̃i ,Ṽ!5
1

2pEuv i2Ṽu.uh̃i u
dv ig~v i !

3

~v i2Ṽ!A12
uh̃i u2

~v i2Ṽ!2

v i2Ṽ2sin~f!h̃i
R1cos~f i !h̃i

I
.

~A4!

Averaging si over v i , that is, ^si&v i

5*df in(f i ;h̃i ,Ṽ)exp(ifi), we obtain the following equa-
tion:

^si~ h̃i !&v i
5h̃iE

2p/2

p/2

df ig~Ṽ1uh̃i usinf i !cosf i exp~ if i !

1 i
h̃i

uh̃i u
E

uv i2Ṽu.uh̃i u
dv ig~v i !~v i2Ṽ!

3S 12A12
uh̃i u2

~v i2Ṽ!2D
5h̃iE

2p/2

p/2

df ig~Ṽ1uh̃i usinf i !cosf i exp~ if i !

1 i h̃ iE
0

p/2

df i

cosf i~12cosf i !

sin3 f i

3H gS Ṽ1
uh̃i u

sinf i
D 2gS Ṽ2

uh̃i u
sinf i

D J . ~A5!
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Note that if g(Ṽ1x)5g(Ṽ2x), we can neglect the effec
of asynchronous oscillators. Wheng(x)5d(x) and b050,
we obtain

^si~ h̃i !&v5
h̃i

uh̃i u
. ~A6!

Next, we estimateh̃i in the framework of SCSNA. In this
analysis, we focus on the memory retrieval states, in wh
the configuration has appreciable overlap with the conden
patternj1 @m1;O(1)# and has little overlap with the un
condensed patternsjm for m.1 @mm;O(1/AN)#. Under
this assumption, we estimate the contribution of the unc
densed patterns using SCSNA@8# and determineh̃i in a self-
consistent manner. In the first step of SCSNA, we split lo
field hi into a signal part~the first term!, a cross-talk noise
part ~the second term!, and a coupling noise part~the third
term!:

hie
2 ib05j i

1m11 (
m.1

j i
mmm1 (

j (Þ i )

N

dni j sj2asi . ~A7!

In the next step, we split the cross-talk noise~the second
term! and the coupling noise~the third term!, respectively,
into the Gaussian random variable and the ORT. Equa
~39! implies thatsi is a function of local fieldhi , natural
frequencyv i2V, and timet; that is,

si5X~hi ,v i2V,t!. ~A8!

Note thatsi is not a function of renormalizedh̃i and Ṽ;
instead, it is a function of the barehi andV in Eq. ~39!. We
can properly evaluate the ORT with this careful treatme
Here, we assume that the microscopic memory effect ca
neglected in thet→` limit. In general,X(hi ,v i2V,t) is
not regular. As such, a variation inX due to a small pertur-
bation in local fieldh denoteddh is satisfied

dX5u~h,v2V,t!dh1v~h,v2V,t!dh̄. ~A9!

Therefore,mm;O(1/AN), m>2 is expressed as

mm5
1

N (
i

j̄ i
mX~hi ,v i2V,t!5

1

N (
i

j̄ i
mXi

(m)1U1mmeib0

1V1m̄me2 ib0, ~A10!

U15
1

N (
i

j̄ i
mj i

mu~hi
(m) ,v i2V,t!, ~A11!

V15
1

N (
i

j̄ i
mj̄ i

mv~hi
(m) ,v i2V,t!, ~A12!

where

Xi
(m)5X~hi

(m) ,v i2V,t!,
04622
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hi
(m)e2 ib05 (

n(Þm)
j i

nmn1 (
j (Þ i )

N

dni j sj2asi . ~A13!

Note thatXi
(m) is uncorrelated withj i

m . We can neglect the
complex conjugate termV1, which leads to a higher-
harmonic term of the coupling function@22#, since
E@ j̄ i

mj̄ i
m#50.

From Eq.~A10!, we obtain

mm5
1

N~12eib0U1!
(

j
j̄ j

mXj
(m) . ~A14!

Substituting Eq.~A14! into the cross-talk noise of Eq.~A7!,
in the limit N→`, we can split the cross-talk noise into th
Gaussian random variable and the ORT:

(
m52

aN

j i
mmm5zi

A1
a

12eib0U
si , ~A15!

zi
A5

1

N~12eib0U !
(
m51

aN

(
j (Þ i )

j i
mj̄ j

mXj
(m) , ~A16!

U5
1

N (
i

u~hi ,v i2V,t!. ~A17!

Next, we split the coupling noise term of Eq.~A7! into the
Gaussian random variable and the ORT:

(
j Þ i

N

dni j sj5 (
j (Þ i )

N

dni j Xj
( i )1sie

ib0U21 s̄ie
2 ib0V2 ,

~A18!

U25
1

N (
j (Þ i )

N

dni j dnji u~hj
( i ) ,v j2V,t!, ~A19!

V25
1

N (
j (Þ i )

N

dni j dnjī v~hj
( i ) ,v j2V,t!, ~A20!

where

Xi
( j )5X~hi

( j ) ,v i2V,t!,

hi
( j )e2 ib05(

n
j i

nmn1 (
k(Þ i , j )

N

dniksk2asi . ~A21!

Note thatXi
( j ) is uncorrelated withdni j . We can also neglec

the complex conjugate termV2, which leads to a higher-
harmonic term of the coupling function@22#, since
E@dni j dnji #50. For the symmetric diluted system
E@dni j dnji #52n2/N, so, in the limitN→`, we can split the
coupling noise term of Eq.~A7! into the Gaussian random
variable and the ORT:

(
j 51

N

dni j sj5zi
G12n2eib0Usi , ~A22!
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zi
G5 (

j (Þ i )

N

dni j Xj
( i ) , ~A23!

U5
1

N (
j

N

u~hj ,v j2V,t!. ~A24!

For the asymmetric diluted system, we can neglect the O
in the coupling noise term:

(
j 51

N

dni j sj5zi
G , ~A25!

zi
G5 (

j (Þ i )

N

dni j Xj
( i ) , ~A26!

sinceE@dni j dnji #50.
From these manipulations, local fieldhi is given by

hie
2 ib05j i

1m11zi
A1zi

G1Gsi , ~A27!

G5
aeib0U

12eib0U
12n2eib0U ~symmetric!, ~A28!

G5
aeib0U

12eib0U
~asymmetric!, ~A29!

where zi
A1zi

G is a random variable of an isotropic two
dimensional Gaussian that satisfies

E$Re@zi
A1zi

G#2%5E$Im@zi
A1zi

G#2%5
a

2u12eib0Uu2
1n2,

E$Re@zi
A1zi

G#Im@zi
A1zi

G#%50.

In the final step of SCSNA, we determine a pure effect
local field h̃i in a self-consistent manner. We present Eq.~47!
again:

2
df i

dt
1v i2Ṽ5sinf i h̃i

R2cosf i h̃i
I . ~A30!

On the other hand, local fieldhi is given by

hie
2 ib05j i

1m11zi
A1zi

G1uGuexp~ ic!si , ~A31!

c5arg~G!. ~A32!
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Substituting Eq.~A31! into Eq. ~39!, we obtain

2
df i

dt
1v i2V5sinf i$Re@eib0~j i

1m11zi
A1zi

G!#

1uGucos~f i1c1b0!%

2cosf i$Im@eib0~j i
1m11zi

A1zi
G!#

1uGusin~f i1c1b0!%

5sinf i Re@eib0~j i
1m11zi

A1zi
G!#

2cosf i Im@eib0~j i
1m11zi

A1zi
G!#

2uGusin~c1b0!. ~A33!

Comparing Eq.~A30! with Eq. ~A33!, we can determine ef-
fective local fieldh̃i ,

h̃ie
2 ib05j i

1m11zi
A1zi

G , ~A34!

and we can obtainṼ, which is the renormalized version o
V,

Ṽ5V2uGusin~c1b0!. ~A35!

These final two results are consistent with the first assu
tion for a pure effective local fieldh̃i in Eq. ~46!.

Finally, we combine the results obtained from SK theo
and SCSNA. We can safely replaceX(hi ,v i2V,t) of order
parametersm1 andU with Eq. ~A5! based onh̃i :

m15
1

N (
i

j̄ i
1X~hi ,v i2V,t!5

1

N (
i

j̄ i
1^si~ h̃i !&v i

,

~A36!

U5
1

N (
i

]X~hi ,v i2V,t!

]hi
5

1

N (
i

]^si~ h̃i !&v i

]h̃i

,

~A37!

h̃ie
2 ib05j i

1m11zi
A1zi

G , ~A38!

becauseh̃i is independent of any microscopic configuratio
of unit i. In conclusion, we can obtain the order parame
equations~54! and~55!. In this way, our derivation process i
complete in a self-consistent manner.
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